These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27159384)

  • 1. Tuning Optical Properties of Encapsulated Clusters of Gold Nanoparticles through Stimuli-Triggered Controlled Aggregation.
    Dergunov SA; Kim MD; Shmakov SN; Richter AG; Weigand S; Pinkhassik E
    Chemistry; 2016 Jun; 22(23):7702-5. PubMed ID: 27159384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of gold nanoparticles as crosslink agent to form chitosan nanocapsules: study of the direct interaction in aqueous solutions.
    Prado-Gotor R; López-Pérez G; Martín MJ; Cabrera-Escribano F; Franconetti A
    J Inorg Biochem; 2014 Jun; 135():77-85. PubMed ID: 24681548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAXS measurement of aggregate of DNA modified gold nanoparticles.
    Yamakoshi S; Sakai Y; Shinohara Y; Amemiya Y; Kanayama N; Takarada T; Maeda M; Ito K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):335-6. PubMed ID: 18029723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promising sub-100 nm tailor made hollow chitosan/poly(acrylic acid) nanocapsules for antibiotic therapy.
    Belbekhouche S; Mansour O; Carbonnier B
    J Colloid Interface Sci; 2018 Jul; 522():183-190. PubMed ID: 29601960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles decorated with oligo(ethylene glycol) thiols: kinetics of colloid aggregation driven by depletion forces.
    Zhang F; Dressen DG; Skoda MW; Jacobs RM; Zorn S; Martin RA; Martin CM; Clark GF; Schreiber F
    Eur Biophys J; 2008 Jun; 37(5):551-61. PubMed ID: 18183382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels.
    Jun H; Fabienne T; Florent M; Coulon PE; Nicolas M; Olivier S
    Langmuir; 2012 Nov; 28(45):15966-74. PubMed ID: 23116539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms.
    Peralta DV; He J; Wheeler DA; Zhang JZ; Tarr MA
    J Microencapsul; 2014; 31(8):824-31. PubMed ID: 25090588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles.
    Yang Y; Burkhard P
    J Nanobiotechnology; 2012 Oct; 10():42. PubMed ID: 23114058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise size control of hydrophobic gold nanoparticles in the 2-5 nm range.
    Goldmann C; Moretti C; Mahler B; Abécassis B; Impéror-Clerc M; Pansu B
    Chem Commun (Camb); 2021 Nov; 57(93):12512-12515. PubMed ID: 34751280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties.
    Blakey I; Merican Z; Thurecht KJ
    Langmuir; 2013 Jul; 29(26):8266-74. PubMed ID: 23751158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise thermal and photothermal dissociation of a hierarchical superaggregate of DNA-functionalized gold nanoparticles.
    Buchkremer A; Linn MJ; Reismann M; Eckert T; Witten KG; Richtering W; von Plessen G; Simon U
    Small; 2011 May; 7(10):1397-402. PubMed ID: 21495186
    [No Abstract]   [Full Text] [Related]  

  • 12. Phase behavior of nanoparticles assembled by DNA linkers.
    Xiong H; van der Lelie D; Gang O
    Phys Rev Lett; 2009 Jan; 102(1):015504. PubMed ID: 19257208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pegylation increases platelet biocompatibility of gold nanoparticles.
    Santos-Martinez MJ; Rahme K; Corbalan JJ; Faulkner C; Holmes JD; Tajber L; Medina C; Radomski MW
    J Biomed Nanotechnol; 2014 Jun; 10(6):1004-15. PubMed ID: 24749395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles at the liquid-liquid interface: X-ray study and Monte Carlo simulation.
    Kubowicz S; Hartmann MA; Daillant J; Sanyal MK; Agrawal VV; Blot C; Konovalov O; Mohwald H
    Langmuir; 2009 Jan; 25(2):952-8. PubMed ID: 19177650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Icosahedral DNA nanocapsules by modular assembly.
    Bhatia D; Mehtab S; Krishnan R; Indi SS; Basu A; Krishnan Y
    Angew Chem Int Ed Engl; 2009; 48(23):4134-7. PubMed ID: 19222079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics.
    Russell BA; Jachimska B; Komorek P; Mulheran PA; Chen Y
    Phys Chem Chem Phys; 2017 Mar; 19(10):7228-7235. PubMed ID: 28234394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation.
    Larson-Smith K; Pozzo DC
    Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of gold nanoparticles through autoreduction of gold ions in the presence of fluoroalkyl end-capped cooligomeric aggregates: LCST-triggered sol-gel switching behavior of novel thermoresponsive fluoroalkyl end-capped cooligomeric nanocomposite-encapsulated gold nanoparticles.
    Sawada H; Takahashi K
    J Colloid Interface Sci; 2010 Nov; 351(1):166-70. PubMed ID: 20696437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-induced biosynthesis of gold nanoparticles in the living brain.
    Rozhkova EA; Lee B; Prasad JA; Liu Y; Shevchenko EV
    Nanoscale; 2019 Nov; 11(41):19285-19290. PubMed ID: 31539009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.