BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27159581)

  • 1. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.
    Park JO; Rubin SA; Xu YF; Amador-Noguez D; Fan J; Shlomi T; Rabinowitz JD
    Nat Chem Biol; 2016 Jul; 12(7):482-9. PubMed ID: 27159581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
    Bennett BD; Kimball EH; Gao M; Osterhout R; Van Dien SJ; Rabinowitz JD
    Nat Chem Biol; 2009 Aug; 5(8):593-9. PubMed ID: 19561621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics-based metabolic flux analysis.
    Henry CS; Broadbelt LJ; Hatzimanikatis V
    Biophys J; 2007 Mar; 92(5):1792-805. PubMed ID: 17172310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway thermodynamics highlights kinetic obstacles in central metabolism.
    Noor E; Bar-Even A; Flamholz A; Reznik E; Liebermeister W; Milo R
    PLoS Comput Biol; 2014 Feb; 10(2):e1003483. PubMed ID: 24586134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux analysis and fluxomics-driven determination of reaction free energy using multiple isotopes.
    Xu J; Martien J; Gilbertson C; Ma J; Amador-Noguez D; Park JO
    Curr Opin Biotechnol; 2020 Aug; 64():151-160. PubMed ID: 32304936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-equilibrium glycolysis supports metabolic homeostasis and energy yield.
    Park JO; Tanner LB; Wei MH; Khana DB; Jacobson TB; Zhang Z; Rubin SA; Li SH; Higgins MB; Stevenson DM; Amador-Noguez D; Rabinowitz JD
    Nat Chem Biol; 2019 Oct; 15(10):1001-1008. PubMed ID: 31548693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.
    Tepper N; Noor E; Amador-Noguez D; Haraldsdóttir HS; Milo R; Rabinowitz J; Liebermeister W; Shlomi T
    PLoS One; 2013; 8(9):e75370. PubMed ID: 24086517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultimate limits for the reaction flux and metabolite levels that may be evolutionarily reached in a linear metabolic pathway.
    Pettersson G; Pettersson P
    Eur J Biochem; 1990 Nov; 194(1):135-9. PubMed ID: 2253610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolites and pathway flexibility.
    Dandekar T; Schmidt S
    In Silico Biol; 2005; 5(2):103-10. PubMed ID: 15972010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intracellular equilibrium thermodynamic and steady-state concentrations of metabolites.
    Bernhard SA
    Cell Biophys; 1988; 12():119-32. PubMed ID: 2453275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data.
    Canelas AB; Ras C; ten Pierick A; van Gulik WM; Heijnen JJ
    Metab Eng; 2011 May; 13(3):294-306. PubMed ID: 21354323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activity reaction core and plasticity of metabolic networks.
    Almaas E; Oltvai ZN; Barabási AL
    PLoS Comput Biol; 2005 Dec; 1(7):e68. PubMed ID: 16362071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations.
    Al Zaid Siddiquee K; Arauzo-Bravo MJ; Shimizu K
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):407-17. PubMed ID: 12802531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing enzymes using metabolome data for the hybrid dynamic/static method.
    Ishii N; Nakayama Y; Tomita M
    Theor Biol Med Model; 2007 May; 4():19. PubMed ID: 17511884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 2. A multidimensional thermodynamic linked-function analysis.
    Mesecar AD; Nowak T
    Biochemistry; 1997 Jun; 36(22):6803-13. PubMed ID: 9184163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Slave' metabolites and enzymes. A rapid way of delineating metabolic control.
    Teusink B; Westerhoff HV
    Eur J Biochem; 2000 Apr; 267(7):1889-93. PubMed ID: 10727927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic constraints on the regulation of metabolic fluxes.
    Dai Z; Locasale JW
    J Biol Chem; 2018 Dec; 293(51):19725-19739. PubMed ID: 30361440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy dissipation of the pyruvate kinase reaction has a minimum at cell metabolite concentrations.
    Markus M; Plesser T
    Biophys Chem; 1983 Nov; 18(4):349-52. PubMed ID: 6362733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.