BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27159581)

  • 21. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models.
    Hamilton JJ; Dwivedi V; Reed JL
    Biophys J; 2013 Jul; 105(2):512-22. PubMed ID: 23870272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data.
    Kümmel A; Panke S; Heinemann M
    Mol Syst Biol; 2006; 2():2006.0034. PubMed ID: 16788595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subtleties in control by metabolic channelling and enzyme organization.
    Kholodenko BN; Rohwer JM; Cascante M; Westerhoff HV
    Mol Cell Biochem; 1998 Jul; 184(1-2):311-20. PubMed ID: 9746327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway.
    Al-Shawi MK; Ketchum CJ; Nakamoto RK
    Biochemistry; 1997 Oct; 36(42):12961-9. PubMed ID: 9335556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the optimality of the enzyme-substrate relationship in bacteria.
    Dourado H; Mori M; Hwa T; Lercher MJ
    PLoS Biol; 2021 Oct; 19(10):e3001416. PubMed ID: 34699521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the design principles of metabolic flux sensing.
    Euler C; Mahadevan R
    Biophys J; 2022 Jan; 121(2):237-247. PubMed ID: 34951981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High similarity of phylogenetic profiles of rate-limiting enzymes with inhibitory relation in Human, Mouse, Rat, budding Yeast and E. coli.
    Zhao M; Qu H
    BMC Genomics; 2011 Nov; 12 Suppl 3(Suppl 3):S10. PubMed ID: 22369203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae.
    Jardine O; Gough J; Chothia C; Teichmann SA
    Genome Res; 2002 Jun; 12(6):916-29. PubMed ID: 12045145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fermentative glycolysis with purified Escherichia coli enzymes for in vitro ATP production and evaluating an engineered enzyme.
    Stevenson BJ; Liu JW; Kuchel PW; Ollis DL
    J Biotechnol; 2012 Jan; 157(1):113-23. PubMed ID: 21963590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity.
    Pohjanjoki P; Lahti R; Goldman A; Cooperman BS
    Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control theory of one enzyme.
    Kholodenko BN; Westerhoff HV
    Biochim Biophys Acta; 1994 Oct; 1208(2):294-305. PubMed ID: 7947961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irreversible metabolic transitions: the glucose 6-phosphate metabolism in yeast cell-free extracts.
    Coevoet MA; Hervagault JF
    Biochem Biophys Res Commun; 1997 May; 234(1):162-6. PubMed ID: 9168982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamics of Bioreactions.
    Held C; Sadowski G
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():395-414. PubMed ID: 27276551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RLEdb: a database of rate-limiting enzymes and their regulation in human, rat, mouse, yeast and E. coli.
    Zhao M; Chen X; Gao G; Tao L; Wei L
    Cell Res; 2009 Jun; 19(6):793-5. PubMed ID: 19468287
    [No Abstract]   [Full Text] [Related]  

  • 38. The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 1. Microstate linear free energy relations.
    Goldbeck RA; Esquerra RM; Holt JM; Ackers GK; Kliger DS
    Biochemistry; 2004 Sep; 43(38):12048-64. PubMed ID: 15379545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamics of the control of metabolism.
    Westerhoff HV; Plomp PJ; Groen AK; Wanders RJ
    Cell Biophys; 1987 Dec; 11():239-67. PubMed ID: 2450661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Michaelis-Menten equation for an enzyme in an oscillating electric field.
    Robertson B; Astumian RD
    Biophys J; 1990 Oct; 58(4):969-74. PubMed ID: 2248999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.