These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27159634)

  • 21. Predicting residue-residue contact maps by a two-layer, integrated neural-network method.
    Xue B; Faraggi E; Zhou Y
    Proteins; 2009 Jul; 76(1):176-83. PubMed ID: 19137600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein interaction sites from sequence profile and residue neighbor list.
    Zhou HX; Shan Y
    Proteins; 2001 Aug; 44(3):336-43. PubMed ID: 11455607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graph theoretic properties of networks formed by the Delaunay tessellation of protein structures.
    Taylor TJ; Vaisman II
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041925. PubMed ID: 16711854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of 3D structures from protein contact maps.
    Vassura M; Margara L; Di Lena P; Medri F; Fariselli P; Casadio R
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):357-67. PubMed ID: 18670040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.
    Khashan R; Zheng W; Tropsha A
    Proteins; 2012 Aug; 80(9):2207-17. PubMed ID: 22581643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks.
    Kukic P; Mirabello C; Tradigo G; Walsh I; Veltri P; Pollastri G
    BMC Bioinformatics; 2014 Jan; 15():6. PubMed ID: 24410833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins.
    Roche R; Bhattacharya S; Bhattacharya D
    PLoS Comput Biol; 2021 Feb; 17(2):e1008753. PubMed ID: 33621244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accessibility and partner number of protein residues, their relationship and a webserver, ContPlot for their display.
    Pal A; Bahadur RP; Ray PS; Chakrabarti P
    BMC Bioinformatics; 2009 Apr; 10():103. PubMed ID: 19356223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein structure classification based on conserved hydrophobic residues.
    Chowriappa P; Dua S; Kanno J; Thompson HW
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):639-51. PubMed ID: 19875862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural determinant of protein designability.
    England JL; Shakhnovich EI
    Phys Rev Lett; 2003 May; 90(21):218101. PubMed ID: 12786593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; BaĆ¹ D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A large-scale comparison of computational models on the residue flexibility for NMR-derived proteins.
    Zhang H; Shi H; Hanlon M
    Protein Pept Lett; 2012 Feb; 19(2):244-51. PubMed ID: 21933137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inter-residue interactions in protein folding and stability.
    Gromiha MM; Selvaraj S
    Prog Biophys Mol Biol; 2004 Oct; 86(2):235-77. PubMed ID: 15288760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CONFOLD: Residue-residue contact-guided ab initio protein folding.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Proteins; 2015 Aug; 83(8):1436-49. PubMed ID: 25974172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural selection of more designable folds: a mechanism for thermophilic adaptation.
    England JL; Shakhnovich BE; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8727-31. PubMed ID: 12843403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
    Zhang C; Mortuza SM; He B; Wang Y; Zhang Y
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.