These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27159918)

  • 1. Membrane permeabilizing action of amphidinol 3 and theonellamide A in raft-forming lipid mixtures.
    Espiritu RA
    Z Naturforsch C J Biosci; 2017 Jan; 72(1-2):43-48. PubMed ID: 27159918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-permeabilizing activities of amphidinol 3, polyene-polyhydroxy antifungal from a marine dinoflagellate.
    Houdai T; Matsuoka S; Matsumori N; Murata M
    Biochim Biophys Acta; 2004 Nov; 1667(1):91-100. PubMed ID: 15533309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lipid constituents on membrane-permeabilizing activity of amphidinols.
    Morsy N; Houdai T; Konoki K; Matsumori N; Oishi T; Murata M
    Bioorg Med Chem; 2008 Mar; 16(6):3084-90. PubMed ID: 18180163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and stereospecific interaction of amphidinol 3 with sterol in lipid bilayers.
    Espiritu RA; Matsumori N; Tsuda M; Murata M
    Biochemistry; 2014 May; 53(20):3287-93. PubMed ID: 24773476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphidinol 3 preferentially binds to cholesterol in disordered domains and disrupts membrane phase separation.
    Hieda M; Sorada A; Kinoshita M; Matsumori N
    Biochem Biophys Rep; 2021 Jul; 26():100941. PubMed ID: 33614998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state (2)H nuclear magnetic resonance.
    Espiritu RA; Matsumori N; Murata M; Nishimura S; Kakeya H; Matsunaga S; Yoshida M
    Biochemistry; 2013 Apr; 52(14):2410-8. PubMed ID: 23477347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total Synthesis of Amphidinol 3: A General Strategy for Synthesizing Amphidinol Analogues and Structure-Activity Relationship Study.
    Wakamiya Y; Ebine M; Matsumori N; Oishi T
    J Am Chem Soc; 2020 Feb; 142(7):3472-3478. PubMed ID: 31986250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of new amphidinols with truncated polyhydroxyl chain and their membrane-permeabilizing activities.
    Morsy N; Houdai T; Matsuoka S; Matsumori N; Adachi S; Oishi T; Murata M; Iwashita T; Fujita T
    Bioorg Med Chem; 2006 Oct; 14(19):6548-54. PubMed ID: 16797998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A; Müller P; Stöckl M; Herrmann A; Huster D
    Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy.
    Bartels T; Lankalapalli RS; Bittman R; Beyer K; Brown MF
    J Am Chem Soc; 2008 Nov; 130(44):14521-32. PubMed ID: 18839945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of integral protein in membrane permeabilization by amphidinols.
    Morsy N; Konoki K; Houdai T; Matsumori N; Oishi T; Murata M; Aimoto S
    Biochim Biophys Acta; 2008 Jun; 1778(6):1453-9. PubMed ID: 18291091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confirmation of the absolute configuration at C45 of amphidinol 3.
    Manabe Y; Ebine M; Matsumori N; Murata M; Oishi T
    J Nat Prod; 2012 Nov; 75(11):2003-6. PubMed ID: 23130992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a critical lipid ratio in raft-like phases exposed to nitric oxide: An AFM study.
    Karanth S; Azinfar A; Helm CA; Delcea M
    Biophys J; 2021 Aug; 120(15):3103-3111. PubMed ID: 34197799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule investigation of the influence played by lipid rafts on ion transport and dynamic features of the pore-forming alamethicin oligomer.
    Chiriac R; Luchian T
    J Membr Biol; 2008; 224(1-3):45-54. PubMed ID: 18850058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of the Largest Amphidinol Homologues from the Dinoflagellate Amphidinium carterae and Structure-Activity Relationships.
    Satake M; Cornelio K; Hanashima S; Malabed R; Murata M; Matsumori N; Zhang H; Hayashi F; Mori S; Kim JS; Kim CH; Lee JS
    J Nat Prod; 2017 Nov; 80(11):2883-2888. PubMed ID: 29120640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM; Feigenson GW
    Biochim Biophys Acta; 2016 Jan; 1858(1):153-61. PubMed ID: 26525664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae.
    Nuzzo G; Cutignano A; Sardo A; Fontana A
    J Nat Prod; 2014 Jun; 77(6):1524-7. PubMed ID: 24926538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction Forces between Lipid Rafts.
    Kurniawan J; Ventrici J; Kittleson G; Kuhl TL
    Langmuir; 2017 Jan; 33(1):382-387. PubMed ID: 28001077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.