These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27160184)

  • 1. A mathematical model of pressure and flow waveforms in the aortic root.
    Žikić D
    Eur Biophys J; 2017 Jan; 46(1):41-48. PubMed ID: 27160184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of intra-aortic flow disturbance by the fluid momentum index: Effect of the left ventricular systolic function on the hemodynamics in the aorta.
    Nakamura M; Wada S; Yamaguchi T
    Technol Health Care; 2007; 15(2):111-20. PubMed ID: 17361055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design.
    Callington A; Long Q; Mohite P; Simon A; Mittal TK
    J Thorac Cardiovasc Surg; 2015 Sep; 150(3):696-704. PubMed ID: 26092505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adaptive transfer function for deriving the aortic pressure waveform from a peripheral artery pressure waveform.
    Swamy G; Xu D; Olivier NB; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1956-63. PubMed ID: 19783780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the aorta: partial transmission of reflected waves from aortic coarctation into supra-aortic branches modulates cerebral hemodynamics and left ventricular load.
    Mynard JP; Kowalski R; Cheung MM; Smolich JJ
    Biomech Model Mechanobiol; 2017 Apr; 16(2):635-650. PubMed ID: 27730475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow in a compliant vessel by the immersed boundary method.
    Kim Y; Lim S; Raman SV; Simonetti OP; Friedman A
    Ann Biomed Eng; 2009 May; 37(5):927-42. PubMed ID: 19283479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Left ventricular volume shifts and aortic root expansion during isovolumic contraction.
    Rodríguez F; Green GR; Dagum P; Nistal JF; Harrington KB; Daughters GT; Ingels NB; Miller DC
    J Heart Valve Dis; 2006 Jul; 15(4):465-73. PubMed ID: 16901037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
    Kim HJ; Vignon-Clementel IE; Figueroa CA; LaDisa JF; Jansen KE; Feinstein JA; Taylor CA
    Ann Biomed Eng; 2009 Nov; 37(11):2153-69. PubMed ID: 19609676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of changes in instantaneous aortic blood flow by the analysis of arterial blood pressure.
    Arai T; Lee K; Marini RP; Cohen RJ
    J Appl Physiol (1985); 2012 Jun; 112(11):1832-8. PubMed ID: 22442022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lumped parameter model of left ventricular filling-pressure waveforms.
    Waite L; Schulz S; Szabo G; Vahl CF
    Biomed Sci Instrum; 2000; 36():75-80. PubMed ID: 10834212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations.
    Epstein S; Willemet M; Chowienczyk PJ; Alastruey J
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H222-34. PubMed ID: 25888513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational assessment of model-based wave separation using a database of virtual subjects.
    Hametner B; Schneider M; Parragh S; Wassertheurer S
    J Biomech; 2017 Nov; 64():26-31. PubMed ID: 28916397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low pulse pressure with high pulsatile external left ventricular power: influence of aortic waves.
    Pahlevan NM; Gharib M
    J Biomech; 2011 Jul; 44(11):2083-9. PubMed ID: 21679951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of arterial hemodynamics after partial prosthetic replacement of the aorta.
    Bauernschmitt R; Schulz S; Schwarzhaupt A; Kiencke U; Vahl CF; Lange R; Hagl S
    Ann Thorac Surg; 1999 Mar; 67(3):676-82. PubMed ID: 10215210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous left ventricular ejection fraction monitoring by aortic pressure waveform analysis.
    Swamy G; Kuiper J; Gudur MS; Olivier NB; Mukkamala R
    Ann Biomed Eng; 2009 Jun; 37(6):1055-68. PubMed ID: 19308732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascending aortic impedance patterns in the kangaroo: their explanation and relation to pressure waveforms.
    Nichols WW; Avolio AP; O'Rourke MF
    Circ Res; 1986 Sep; 59(3):247-55. PubMed ID: 2945669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Wavefronts" in the aorta--implications for the mechanisms of left ventricular ejection and aortic valve closure.
    Jones CJ; Sugawara M
    Cardiovasc Res; 1993 Nov; 27(11):1902-5. PubMed ID: 8287392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.