These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A variable loop involved in the substrate selectivity of pinoresinol/lariciresinol reductase from Camellia sinensis. Wu Y; Xing D; Ma G; Dai X; Gao L; Xia T Phytochemistry; 2019 Jun; 162():1-9. PubMed ID: 30844490 [TBL] [Abstract][Full Text] [Related]
23. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. Dinkova-Kostova AT; Gang DR; Davin LB; Bedgar DL; Chu A; Lewis NG J Biol Chem; 1996 Nov; 271(46):29473-82. PubMed ID: 8910615 [TBL] [Abstract][Full Text] [Related]
24. Engineering of an H Lv Y; Cheng X; Du G; Zhou J; Chen J Biotechnol Bioeng; 2017 Sep; 114(9):2066-2074. PubMed ID: 28436004 [TBL] [Abstract][Full Text] [Related]
25. Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Sicilia T; Niemeyer HB; Honig DM; Metzler M J Agric Food Chem; 2003 Feb; 51(5):1181-8. PubMed ID: 12590454 [TBL] [Abstract][Full Text] [Related]
26. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. Meagher LP; Beecher GR; Flanagan VP; Li BW J Agric Food Chem; 1999 Aug; 47(8):3173-80. PubMed ID: 10552626 [TBL] [Abstract][Full Text] [Related]
27. Stereochemical diversity in lignan biosynthesis of Arctium lappa L. Suzuki S; Umezawa T; Shimada M Biosci Biotechnol Biochem; 2002 Jun; 66(6):1262-9. PubMed ID: 12162547 [TBL] [Abstract][Full Text] [Related]
28. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Davin LB; Wang HB; Crowell AL; Bedgar DL; Martin DM; Sarkanen S; Lewis NG Science; 1997 Jan; 275(5298):362-6. PubMed ID: 8994027 [TBL] [Abstract][Full Text] [Related]
30. Use of Copper as a Trigger for the in Vivo Activity of E. coli Laccase CueO: A Simple Tool for Biosynthetic Purposes. Decembrino D; Girhard M; Urlacher VB Chembiochem; 2021 Apr; 22(8):1470-1479. PubMed ID: 33332702 [TBL] [Abstract][Full Text] [Related]
31. Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. Milder IE; Arts IC; Venema DP; Lasaroms JJ; Wähälä K; Hollman PC J Agric Food Chem; 2004 Jul; 52(15):4643-51. PubMed ID: 15264894 [TBL] [Abstract][Full Text] [Related]
32. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. Min T; Kasahara H; Bedgar DL; Youn B; Lawrence PK; Gang DR; Halls SC; Park H; Hilsenbeck JL; Davin LB; Lewis NG; Kang C J Biol Chem; 2003 Dec; 278(50):50714-23. PubMed ID: 13129921 [TBL] [Abstract][Full Text] [Related]
33. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. Hemmati S; Schmidt TJ; Fuss E FEBS Lett; 2007 Feb; 581(4):603-10. PubMed ID: 17257599 [TBL] [Abstract][Full Text] [Related]
34. Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. Chu A; Dinkova A; Davin LB; Bedgar DL; Lewis NG J Biol Chem; 1993 Dec; 268(36):27026-33. PubMed ID: 8262939 [TBL] [Abstract][Full Text] [Related]
35. Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Xiao Y; Shao K; Zhou J; Wang L; Ma X; Wu D; Yang Y; Chen J; Feng J; Qiu S; Lv Z; Zhang L; Zhang P; Chen W Nat Commun; 2021 May; 12(1):2828. PubMed ID: 33990581 [TBL] [Abstract][Full Text] [Related]
36. Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Wankhede DP; Biswas DK; Rajkumar S; Sinha AK Protoplasma; 2013 Dec; 250(6):1239-49. PubMed ID: 23653238 [TBL] [Abstract][Full Text] [Related]
37. Generation of Triple-Transgenic Forsythia Cell Cultures as a Platform for the Efficient, Stable, and Sustainable Production of Lignans. Murata J; Matsumoto E; Morimoto K; Koyama T; Satake H PLoS One; 2015; 10(12):e0144519. PubMed ID: 26641084 [TBL] [Abstract][Full Text] [Related]
38. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf. Morimoto K; Satake H Biol Pharm Bull; 2013; 36(9):1519-23. PubMed ID: 23832493 [TBL] [Abstract][Full Text] [Related]
39. Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana. Nuoendagula ; Kamimura N; Mori T; Nakabayashi R; Tsuji Y; Hishiyama S; Saito K; Masai E; Kajita S Plant Cell Rep; 2016 Mar; 35(3):513-26. PubMed ID: 26601823 [TBL] [Abstract][Full Text] [Related]
40. On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Davin LB; Bedgar DL; Katayama T; Lewis NG Phytochemistry; 1992 Nov; 31(11):3869-74. PubMed ID: 11536515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]