BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27160465)

  • 21. Personalizing the Electrode to Neuromodulate an Extended Cortical Region.
    Cancelli A; Cottone C; Di Giorgio M; Carducci F; Tecchio F
    Brain Stimul; 2015; 8(3):555-60. PubMed ID: 25680321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability.
    Tremblay S; Larochelle-Brunet F; Lafleur LP; El Mouderrib S; Lepage JF; Théoret H
    Eur J Neurosci; 2016 Sep; 44(5):2184-90. PubMed ID: 27336413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor.
    Mehta AR; Pogosyan A; Brown P; Brittain JS
    Brain Stimul; 2015; 8(2):260-8. PubMed ID: 25499037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition.
    Tazoe T; Endoh T; Kitamura T; Ogata T
    PLoS One; 2014; 9(12):e114244. PubMed ID: 25478912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paired associative transcranial alternating current stimulation increases the excitability of corticospinal projections in humans.
    McNickle E; Carson RG
    J Physiol; 2015 Apr; 593(7):1649-66. PubMed ID: 25504575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sham transcranial electrical stimulation and its effects on corticospinal excitability: a systematic review and meta-analysis.
    Dissanayaka TD; Zoghi M; Farrell M; Egan GF; Jaberzadeh S
    Rev Neurosci; 2018 Feb; 29(2):223-232. PubMed ID: 28889119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.
    Laczó B; Antal A; Rothkegel H; Paulus W
    Restor Neurol Neurosci; 2014; 32(3):403-10. PubMed ID: 24576783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability.
    Chaieb L; Antal A; Paulus W
    Restor Neurol Neurosci; 2011; 29(3):167-75. PubMed ID: 21586823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. a-tDCS differential modulation of corticospinal excitability: the effects of electrode size.
    Bastani A; Jaberzadeh S
    Brain Stimul; 2013 Nov; 6(6):932-7. PubMed ID: 23664681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.
    Cancelli A; Cottone C; Zito G; Di Giorgio M; Pasqualetti P; Tecchio F
    Restor Neurol Neurosci; 2015; 33(2):105-14. PubMed ID: 25588458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching.
    Heise KF; Monteiro TS; Leunissen I; Mantini D; Swinnen SP
    Sci Rep; 2019 Feb; 9(1):3144. PubMed ID: 30816305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How electrode montage affects transcranial direct current stimulation of the human motor cortex.
    Salvador R; Wenger C; Nitsche MA; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6924-7. PubMed ID: 26737885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects.
    Fertonani A; Ferrari C; Miniussi C
    Clin Neurophysiol; 2015 Nov; 126(11):2181-8. PubMed ID: 25922128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner.
    Miyaguchi S; Otsuru N; Kojima S; Yokota H; Saito K; Inukai Y; Onishi H
    Neurosci Lett; 2019 Feb; 694():64-68. PubMed ID: 30445151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI.
    Cabral-Calderin Y; Williams KA; Opitz A; Dechent P; Wilke M
    Neuroimage; 2016 Nov; 141():88-107. PubMed ID: 27393419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES).
    Bortoletto M; Rodella C; Salvador R; Miranda PC; Miniussi C
    Brain Stimul; 2016; 9(4):525-8. PubMed ID: 27061368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning.
    Pollok B; Boysen AC; Krause V
    Behav Brain Res; 2015 Oct; 293():234-40. PubMed ID: 26225845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABA
    Nowak M; Hinson E; van Ede F; Pogosyan A; Guerra A; Quinn A; Brown P; Stagg CJ
    J Neurosci; 2017 Apr; 37(17):4481-4492. PubMed ID: 28348136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of transcranial stimulating electrode montages over the head for lower-extremity transcranial motor evoked potential monitoring.
    Tomio R; Akiyama T; Ohira T; Yoshida K
    J Neurosurg; 2017 Jun; 126(6):1951-1958. PubMed ID: 27662531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of Motor Learning Capacity by Transcranial Alternating Current Stimulation.
    Sugata H; Yagi K; Yazawa S; Nagase Y; Tsuruta K; Ikeda T; Matsushita K; Hara M; Kawakami K; Kawakami K
    Neuroscience; 2018 Nov; 391():131-139. PubMed ID: 30244032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.