These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27160596)

  • 21. What is synergy? The Saariselkä agreement revisited.
    Tang J; Wennerberg K; Aittokallio T
    Front Pharmacol; 2015; 6():181. PubMed ID: 26388771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring synergy and its role in antimicrobial peptide biology.
    Howell M; Wenc AK; Donaghy CM; Wasche DV; Abissi I; Naing MD; Pierce S; Angeles-Boza AM
    Methods Enzymol; 2022; 663():99-130. PubMed ID: 35168799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold.
    Findlay B; Zhanel GG; Schweizer F
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4049-58. PubMed ID: 20696877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic Random Copolymers as a Molecular Platform To Mimic Host-Defense Antimicrobial Peptides.
    Takahashi H; Caputo GA; Vemparala S; Kuroda K
    Bioconjug Chem; 2017 May; 28(5):1340-1350. PubMed ID: 28379682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial peptides (AMPs): The quintessential 'offense and defense' molecules are more than antimicrobials.
    Patel S; Akhtar N
    Biomed Pharmacother; 2017 Nov; 95():1276-1283. PubMed ID: 28938518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli.
    Tawfik MM; Bertelsen M; Abdel-Rahman MA; Strong PN; Miller K
    mSphere; 2021 May; 6(3):. PubMed ID: 33980680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential for adaptive maintenance of diversity in insect antimicrobial peptides.
    Unckless RL; Lazzaro BP
    Philos Trans R Soc Lond B Biol Sci; 2016 May; 371(1695):. PubMed ID: 27160594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.
    Falanga A; Lombardi L; Franci G; Vitiello M; Iovene MR; Morelli G; Galdiero M; Galdiero S
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Insect antimicrobial peptides: structures, properties and gene regulation].
    Wang YP; Lai R
    Dongwuxue Yanjiu; 2010 Feb; 31(1):27-34. PubMed ID: 20446450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets.
    Cardoso MH; Meneguetti BT; Costa BO; Buccini DF; Oshiro KGN; Preza SLE; Carvalho CME; Migliolo L; Franco OL
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31581426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida.
    Lyu Y; Yang Y; Lyu X; Dong N; Shan A
    Sci Rep; 2016 Jun; 6():27258. PubMed ID: 27251456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Describing the mechanism of antimicrobial peptide action with the interfacial activity model.
    Wimley WC
    ACS Chem Biol; 2010 Oct; 5(10):905-17. PubMed ID: 20698568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New antimicrobial frontiers.
    Zucca M; Scutera S; Savoia D
    Mini Rev Med Chem; 2011 Sep; 11(10):888-900. PubMed ID: 21781024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens.
    Payne JE; Dubois AV; Ingram RJ; Weldon S; Taggart CC; Elborn JS; Tunney MM
    Int J Antimicrob Agents; 2017 Sep; 50(3):427-435. PubMed ID: 28666755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribosomes: The New Role of Ribosomal Proteins as Natural Antimicrobials.
    Hurtado-Rios JJ; Carrasco-Navarro U; Almanza-Pérez JC; Ponce-Alquicira E
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in the development of anti-infective peptoids.
    Bicker KL; Cobb SL
    Chem Commun (Camb); 2020 Sep; 56(76):11158-11168. PubMed ID: 32870199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids.
    Chongsiriwatana NP; Lin JS; Kapoor R; Wetzler M; Rea JAC; Didwania MK; Contag CH; Barron AE
    Sci Rep; 2017 Dec; 7(1):16718. PubMed ID: 29196622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection.
    Jiang S; Deslouches B; Chen C; Di ME; Di YP
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides.
    Wang CK; Shih LY; Chang KY
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.