BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27161359)

  • 1. Molecular evolution of anthocyanin pigmentation genes following losses of flower color.
    Ho WW; Smith SD
    BMC Evol Biol; 2016 May; 16():98. PubMed ID: 27161359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergent Evolution at the Pathway Level: Predictable Regulatory Changes during Flower Color Transitions.
    Larter M; Dunbar-Wallis A; Berardi AE; Smith SD
    Mol Biol Evol; 2018 Sep; 35(9):2159-2169. PubMed ID: 29878153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic basis for a rare floral mutant in an Andean species of Solanaceae.
    Coburn RA; Griffin RH; Smith SD
    Am J Bot; 2015 Feb; 102(2):264-72. PubMed ID: 25667079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection favors loss of floral pigmentation in a highly selfing morning glory.
    Duncan TM; Rausher MD
    PLoS One; 2020; 15(4):e0231263. PubMed ID: 32282839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata).
    Campitelli BE; Kenney AM; Hopkins R; Soule J; Lovell JT; Juenger TE
    Mol Biol Evol; 2018 Apr; 35(4):807-822. PubMed ID: 29253197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene loss and parallel evolution contribute to species difference in flower color.
    Smith SD; Rausher MD
    Mol Biol Evol; 2011 Oct; 28(10):2799-810. PubMed ID: 21551271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel R3 MYB transcriptional repressor associated with the loss of floral pigmentation in Iochroma.
    Gates DJ; Olson BJSC; Clemente TE; Smith SD
    New Phytol; 2018 Feb; 217(3):1346-1356. PubMed ID: 29023752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tempo and mode of flower color evolution.
    Smith SD; Goldberg EE
    Am J Bot; 2015 Jul; 102(7):1014-25. PubMed ID: 26199360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae.
    Ellis TJ; Field DL
    Ann Bot; 2016 Jun; 117(7):1133-40. PubMed ID: 27192708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise evolution of floral pigmentation predicted by biochemical pathway structure.
    Ng J; Freitas LB; Smith SD
    Evolution; 2018 Dec; 72(12):2792-2802. PubMed ID: 30187462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evolution of an anthocyanin pathway enzyme during a flower color transition.
    Smith SD; Wang S; Rausher MD
    Mol Biol Evol; 2013 Mar; 30(3):602-12. PubMed ID: 23155005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxed constraint and evolutionary rate variation between basic helix-loop-helix floral anthocyanin regulators in Ipomoea.
    Streisfeld MA; Rausher MD
    Mol Biol Evol; 2007 Dec; 24(12):2816-26. PubMed ID: 17921484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary correlations in flavonoid production across flowers and leaves in the Iochrominae (Solanaceae).
    Berardi AE; Hildreth SB; Helm RF; Winkel BS; Smith SD
    Phytochemistry; 2016 Oct; 130():119-27. PubMed ID: 27291343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictable patterns of constraint among anthocyanin-regulating transcription factors in Ipomoea.
    Streisfeld MA; Liu D; Rausher MD
    New Phytol; 2011 Jul; 191(1):264-274. PubMed ID: 21366597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome analysis identified important genes and regulatory pathways for flower color variation in Paphiopedilum hirsutissimum.
    Li X; Fan J; Luo S; Yin L; Liao H; Cui X; He J; Zeng Y; Qu J; Bu Z
    BMC Plant Biol; 2021 Oct; 21(1):495. PubMed ID: 34706650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inheritance and reproductive consequences of floral anthocyanin deficiency in Silene dioica (Caryophyllaceae).
    Rahmé J; Suter L; Widmer A; Karrenberg S
    Am J Bot; 2014 Aug; 101(8):1388-92. PubMed ID: 25156986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus).
    Yuan YW; Sagawa JM; Frost L; Vela JP; Bradshaw HD
    New Phytol; 2014 Dec; 204(4):1013-27. PubMed ID: 25103615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription Factors Evolve Faster Than Their Structural Gene Targets in the Flavonoid Pigment Pathway.
    Wheeler LC; Walker JF; Ng J; Deanna R; Dunbar-Wallis A; Backes A; Pezzi PH; Palchetti MV; Robertson HM; Monaghan A; de Freitas LB; Barboza GE; Moyroud E; Smith SD
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35212724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence, constraint and the role of gene expression during adaptive radiation: floral anthocyanins in Aquilegia.
    Whittall JB; Voelckel C; Kliebenstein DJ; Hodges SA
    Mol Ecol; 2006 Dec; 15(14):4645-57. PubMed ID: 17107490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories.
    Iida S; Morita Y; Choi JD; Park KI; Hoshino A
    Adv Biophys; 2004; 38():141-59. PubMed ID: 15493332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.