These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27161379)

  • 1. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.
    Huang C; Zhang J; Young NP; Snaith HJ; Grant PS
    Sci Rep; 2016 May; 6():25684. PubMed ID: 27161379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
    Wang X; Liu B; Xiang Q; Wang Q; Hou X; Chen D; Shen G
    ChemSusChem; 2014 Jan; 7(1):308-13. PubMed ID: 24339208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications.
    Lu C; Chen X
    Acc Chem Res; 2020 Aug; 53(8):1468-1477. PubMed ID: 32658447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.
    Huang C; Zhang J; Snaith HJ; Grant PS
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20756-65. PubMed ID: 27467593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Principles for Manipulating Electrochemical Interfaces in Solid-State Supercapacitors for Wearable Applications.
    Jha MK; Subramaniam C
    ACS Omega; 2021 Mar; 6(12):7970-7978. PubMed ID: 33817455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs.
    Liang J; Jiang C; Wu W
    Nanoscale; 2019 Apr; 11(15):7041-7061. PubMed ID: 30931460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Solid Supercapacitors of Novel Nanostructured Electrodes Outperform Most Supercapacitors.
    Cho S; Lim J; Seo Y
    ACS Omega; 2022 Oct; 7(42):37825-37833. PubMed ID: 36312342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating the Self-Discharge of Flexible All-Solid-State Supercapacitors by a Heterogeneous Polymer Electrolyte.
    Wang X; Liu Y; Li H; Lv T; Wan J; Dong K; Chen Z; Chen T
    Small; 2021 Aug; 17(31):e2102054. PubMed ID: 34245110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics.
    Chen W; He Y; Li X; Zhou J; Zhang Z; Zhao C; Gong C; Li S; Pan X; Xie E
    Nanoscale; 2013 Dec; 5(23):11733-41. PubMed ID: 24114203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.
    Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors.
    Bissett MA; Kinloch IA; Dryfe RA
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17388-98. PubMed ID: 26196223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.
    Choi C; Kim SH; Sim HJ; Lee JA; Choi AY; Kim YT; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Sci Rep; 2015 Mar; 5():9387. PubMed ID: 25797351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.
    Li H; Lv T; Li N; Yao Y; Liu K; Chen T
    Nanoscale; 2017 Nov; 9(46):18474-18481. PubMed ID: 29159361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated ion transport in all-solid-state flexible supercapacitors.
    Choi BG; Hong J; Hong WH; Hammond PT; Park H
    ACS Nano; 2011 Sep; 5(9):7205-13. PubMed ID: 21823578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.