These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27161379)

  • 21. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system.
    Wang X; Liu B; Liu R; Wang Q; Hou X; Chen D; Wang R; Shen G
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1849-53. PubMed ID: 24505005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible All-Solid-State Supercapacitors based on Liquid-Exfoliated Black-Phosphorus Nanoflakes.
    Hao C; Yang B; Wen F; Xiang J; Li L; Wang W; Zeng Z; Xu B; Zhao Z; Liu Z; Tian Y
    Adv Mater; 2016 Apr; 28(16):3194-201. PubMed ID: 26915349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards flexible solid-state supercapacitors for smart and wearable electronics.
    Dubal DP; Chodankar NR; Kim DH; Gomez-Romero P
    Chem Soc Rev; 2018 Mar; 47(6):2065-2129. PubMed ID: 29399689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
    Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J
    Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors.
    Liu B; Liu B; Wang Q; Wang X; Xiang Q; Chen D; Shen G
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10011-7. PubMed ID: 24050440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes.
    Liu H; Sun Z; Chen Y; Zhang W; Chen X; Wong CP
    ACS Nano; 2022 Jul; 16(7):10088-10129. PubMed ID: 35786945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo
    Wang Q; Ma Y; Wu Y; Zhang D; Miao M
    ChemSusChem; 2017 Apr; 10(7):1427-1435. PubMed ID: 28195423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Materials for suspension (semi-solid) electrodes for energy and water technologies.
    Hatzell KB; Boota M; Gogotsi Y
    Chem Soc Rev; 2015 Dec; 44(23):8664-87. PubMed ID: 26412441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional Hierarchically Mesoporous ZnCo
    Moon IK; Yoon S; Oh J
    Chemistry; 2017 Jan; 23(3):597-604. PubMed ID: 27805794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transparent, flexible supercapacitors from nano-engineered carbon films.
    Jung HY; Karimi MB; Hahm MG; Ajayan PM; Jung YJ
    Sci Rep; 2012; 2():773. PubMed ID: 23105970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-Dimensional MoS
    Wang S; Zhu J; Shao Y; Li W; Wu Y; Zhang L; Hao X
    Chemistry; 2017 Mar; 23(14):3438-3446. PubMed ID: 28078805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors.
    Raju K; Ozoemena KI
    Sci Rep; 2015 Dec; 5():17629. PubMed ID: 26631578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices.
    Lee JA; Shin MK; Kim SH; Cho HU; Spinks GM; Wallace GG; Lima MD; Lepró X; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2013; 4():1970. PubMed ID: 23733169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the dynamics of charging in nanoporous carbon-based supercapacitors.
    Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P
    ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes.
    Zheng X; Yan X; Sun Y; Yu Y; Zhang G; Shen Y; Liang Q; Liao Q; Zhang Y
    J Colloid Interface Sci; 2016 Mar; 466():291-6. PubMed ID: 26748061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.