These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27161389)

  • 1. Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate.
    Dutka F; Opalski AS; Garstecki P
    Lab Chip; 2016 May; 16(11):2044-9. PubMed ID: 27161389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated generation of libraries of nL droplets.
    Kaminski TS; Jakiela S; Czekalska MA; Postek W; Garstecki P
    Lab Chip; 2012 Oct; 12(20):3995-4002. PubMed ID: 22968539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample.
    Postek W; Kaminski TS; Garstecki P
    Lab Chip; 2017 Mar; 17(7):1323-1331. PubMed ID: 28271118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions.
    Opalski AS; Makuch K; Lai YK; Derzsi L; Garstecki P
    Lab Chip; 2019 Mar; 19(7):1183-1192. PubMed ID: 30843018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.
    Schuler F; Schwemmer F; Trotter M; Wadle S; Zengerle R; von Stetten F; Paust N
    Lab Chip; 2015 Jul; 15(13):2759-66. PubMed ID: 25947077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrifugal Step Emulsification: How Buoyancy Enables High Generation Rates of Monodisperse Droplets.
    Schulz M; von Stetten F; Zengerle R; Paust N
    Langmuir; 2019 Jul; 35(30):9809-9815. PubMed ID: 31283246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay.
    Li HT; Wang HF; Wang Y; Pan JZ; Fang Q
    Talanta; 2020 Sep; 217():120997. PubMed ID: 32498829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple capillary-based open microfluidic device for size on-demand high-throughput droplet/bubble/microcapsule generation.
    Mei L; Jin M; Xie S; Yan Z; Wang X; Zhou G; van den Berg A; Shui L
    Lab Chip; 2018 Sep; 18(18):2806-2815. PubMed ID: 30112532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Interface Emulsification for Generating Size-Tunable Droplets.
    Xu P; Zheng X; Tao Y; Du W
    Anal Chem; 2016 Mar; 88(6):3171-7. PubMed ID: 26849419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette.
    Derzsi L; Kaminski TS; Garstecki P
    Lab Chip; 2016 Mar; 16(5):893-901. PubMed ID: 26805579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoliter-Scale Droplet-Droplet Microfluidic Microextraction Coupled with MALDI-TOF Mass Spectrometry for Metabolite Analysis of Cell Droplets.
    Sun WH; Wei Y; Guo XL; Wu Q; Di X; Fang Q
    Anal Chem; 2020 Jul; 92(13):8759-8767. PubMed ID: 32496763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device.
    Ten Klooster S; Sahin S; Schroën K
    Sci Rep; 2019 May; 9(1):7820. PubMed ID: 31127142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip.
    Mao Y; Pan Y; Li X; Li B; Chu J; Pan T
    Lab Chip; 2018 Sep; 18(18):2720-2729. PubMed ID: 30014071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Fluorophore Detection in Femtoliter Droplets Generated by Flow Focusing.
    Weinmeister R; Freeman E; Eperon IC; Stuart AM; Hudson AJ
    ACS Nano; 2015 Oct; 9(10):9718-30. PubMed ID: 26365461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-library assembly programmed by on-demand nano-liter droplets from a custom microfluidic chip.
    Tangen U; Minero GA; Sharma A; Wagler PF; Cohen R; Raz O; Marx T; Ben-Yehezkel T; McCaskill JS
    Biomicrofluidics; 2015 Jul; 9(4):044103. PubMed ID: 26221198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding droplet breakup in a post-array device with sheath-flow configuration.
    Masui S; Kanno Y; Nisisako T
    Lab Chip; 2023 Nov; 23(23):4959-4966. PubMed ID: 37873662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.