These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 27161480)

  • 1. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti.
    Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M
    BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Aedes aegypti cis-regulatory elements that promote gene expression in olfactory receptor neurons of distantly related dipteran insects.
    Mysore K; Li P; Duman-Scheel M
    Parasit Vectors; 2018 Jul; 11(1):406. PubMed ID: 29996889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) to Identify Functional Regulatory DNA in Insect Genomes.
    McKay DJ
    Methods Mol Biol; 2019; 1858():89-97. PubMed ID: 30414113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.
    Evans BR; Gloria-Soria A; Hou L; McBride C; Bonizzoni M; Zhao H; Powell JR
    G3 (Bethesda); 2015 Feb; 5(5):711-8. PubMed ID: 25721127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq).
    Bianco S; Rodrigue S; Murphy BD; Gévry N
    Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PeakMatcher facilitates updated Aedes aegypti embryonic cis-regulatory element map.
    Nowling RJ; Behura SK; Halfon MS; Emrich SJ; Duman-Scheel M
    Hereditas; 2021 Jan; 158(1):7. PubMed ID: 33509290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana.
    Omidbakhshfard MA; Winck FV; Arvidsson S; Riaño-Pachón DM; Mueller-Roeber B
    J Integr Plant Biol; 2014 Jun; 56(6):527-38. PubMed ID: 24373132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus infection.
    Behura SK; Severson DW
    Infect Genet Evol; 2012 Oct; 12(7):1413-8. PubMed ID: 22579482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes.
    Suzuki Y; Frangeul L; Dickson LB; Blanc H; Verdier Y; Vinh J; Lambrechts L; Saleh MC
    J Virol; 2017 Aug; 91(15):. PubMed ID: 28539440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dengue virus infection induces chromatin remodeling at locus AAEL006536 in the midgut of Aedes aegypti.
    Gleason-Rodríguez G; Castillo-Méndez M; Maya K; Ramos-Castañeda J; Valverde-Garduño V
    Salud Publica Mex; 2018; 60(1):41-47. PubMed ID: 29689655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti.
    Bonizzoni M; Dunn WA; Campbell CL; Olson KE; Dimon MT; Marinotti O; James AA
    BMC Genomics; 2011 Jan; 12():82. PubMed ID: 21276245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.
    Waki H; Nakamura M; Yamauchi T; Wakabayashi K; Yu J; Hirose-Yotsuya L; Take K; Sun W; Iwabu M; Okada-Iwabu M; Fujita T; Aoyama T; Tsutsumi S; Ueki K; Kodama T; Sakai J; Aburatani H; Kadowaki T
    PLoS Genet; 2011 Oct; 7(10):e1002311. PubMed ID: 22028663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for TALEN Evaluation, Use, and Mutation Detection in the Mosquito Aedes aegypti.
    Basu S; Aryan A; Haac ME; Myles KM; Adelman ZN
    Methods Mol Biol; 2016; 1338():157-77. PubMed ID: 26443221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing functional polymorphisms in the dengue vector, Aedes aegypti.
    Bonizzoni M; Britton M; Marinotti O; Dunn WA; Fass J; James AA
    BMC Genomics; 2013 Oct; 14():739. PubMed ID: 24168143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in mapping the yellow fever mosquito genome.
    Sharakhova MV; Sharakhov IV
    Tsitologiia; 2013; 55(4):241-3. PubMed ID: 23875456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements).
    Giresi PG; Lieb JD
    Methods; 2009 Jul; 48(3):233-9. PubMed ID: 19303047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti.
    Rašić G; Filipović I; Weeks AR; Hoffmann AA
    BMC Genomics; 2014 Apr; 15():275. PubMed ID: 24726019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association mapping of segregating sites in the early trypsin gene and susceptibility to dengue-2 virus in the mosquito Aedes aegypti.
    Gorrochotegui-Escalante N; Lozano-Fuentes S; Bennett KE; Molina-Cruz A; Beaty BJ; Blackiv WC
    Insect Biochem Mol Biol; 2005 Jul; 35(7):771-88. PubMed ID: 15894193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a ribosomal DNA intergenic spacer region from the yellow fever mosquito, Aedes aegypti.
    Wu CC; Fallon AM
    Insect Mol Biol; 1998 Feb; 7(1):19-29. PubMed ID: 9459426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aedes aegypti genomics.
    Severson DW; Knudson DL; Soares MB; Loftus BJ
    Insect Biochem Mol Biol; 2004 Jul; 34(7):715-21. PubMed ID: 15242713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.