BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27161700)

  • 1. PO-12 - The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model.
    Gilardi M; Bersini S; Calleja AB; Kamm RD; Vanoni M; Moretti M
    Thromb Res; 2016 Apr; 140 Suppl 1():S180-1. PubMed ID: 27161700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The driving role of the Cdk5/Tln1/FAK
    Gilardi M; Bersini S; Valtorta S; Proietto M; Crippa M; Boussommier-Calleja A; Labelle M; Moresco RM; Vanoni M; Kamm RD; Moretti M
    Biomaterials; 2021 Sep; 276():120975. PubMed ID: 34333365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARF1 regulates adhesion of MDA-MB-231 invasive breast cancer cells through formation of focal adhesions.
    Schlienger S; Ramirez RA; Claing A
    Cell Signal; 2015 Mar; 27(3):403-15. PubMed ID: 25530216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation.
    Jeon JS; Bersini S; Gilardi M; Dubini G; Charest JL; Moretti M; Kamm RD
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):214-9. PubMed ID: 25524628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model.
    Boussommier-Calleja A; Atiyas Y; Haase K; Headley M; Lewis C; Kamm RD
    Biomaterials; 2019 Apr; 198():180-193. PubMed ID: 29548546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined microfluidic-transcriptomic approach to characterize the extravasation potential of cancer cells.
    Bersini S; Miermont A; Pavesi A; Kamm RD; Thiery JP; Moretti M; Adriani G
    Oncotarget; 2018 Nov; 9(90):36110-36125. PubMed ID: 30546831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lectin Staining of Microvascular Glycocalyx in Microfluidic Cancer Cell Extravasation Assays.
    Beyer S; Blocki A; Cheung MCY; Wan ZHY; Mehrjou B; Kamm RD
    Life (Basel); 2021 Feb; 11(3):. PubMed ID: 33668945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform.
    Hajal C; Ibrahim L; Serrano JC; Offeddu GS; Kamm RD
    Biomaterials; 2021 Jan; 265():120470. PubMed ID: 33190735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiR-124 suppresses cell motility and adhesion by targeting talin 1 in prostate cancer cells.
    Zhang W; Mao YQ; Wang H; Yin WJ; Zhu SX; Wang WC
    Cancer Cell Int; 2015; 15():49. PubMed ID: 25969668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rho GTPase signalling networks in cancer cell transendothelial migration.
    Rodenburg WS; van Buul JD
    Vasc Biol; 2021; 3(1):R77-R95. PubMed ID: 34738075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Single-Cell Migration and Extravasation Platform through Selective Surface Modification.
    Roberts SA; Waziri AE; Agrawal N
    Anal Chem; 2016 Mar; 88(5):2770-6. PubMed ID: 26833093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Versatile Microfluidic Platform for Extravasation Studies Based on DNA Origami-Cell Interactions.
    García-Chamé M; Wadhwani P; Pfeifer J; Schepers U; Niemeyer CM; Domínguez CM
    Angew Chem Int Ed Engl; 2024 Apr; ():e202318805. PubMed ID: 38687094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thrombin-mediated focal adhesion plaque reorganization in endothelium: role of protein phosphorylation.
    Schaphorst KL; Pavalko FM; Patterson CE; Garcia JG
    Am J Respir Cell Mol Biol; 1997 Oct; 17(4):443-55. PubMed ID: 9376119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of tumor cell adhesion and migration in organ-specific metastasis formation.
    Gassmann P; Enns A; Haier J
    Onkologie; 2004 Dec; 27(6):577-82. PubMed ID: 15591720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier.
    Heyder C; Gloria-Maercker E; Entschladen F; Hatzmann W; Niggemann B; Zänker KS; Dittmar T
    J Cancer Res Clin Oncol; 2002 Oct; 128(10):533-8. PubMed ID: 12384796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro anti-metastatic activity of enterolactone, a mammalian lignan derived from flax lignan, and down-regulation of matrix metalloproteinases in MCF-7 and MDA MB 231 cell lines.
    Mali AV; Wagh UV; Hegde MV; Chandorkar SS; Surve SV; Patole MV
    Indian J Cancer; 2012; 49(1):181-7. PubMed ID: 22842186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis.
    Leong HS; Robertson AE; Stoletov K; Leith SJ; Chin CA; Chien AE; Hague MN; Ablack A; Carmine-Simmen K; McPherson VA; Postenka CO; Turley EA; Courtneidge SA; Chambers AF; Lewis JD
    Cell Rep; 2014 Sep; 8(5):1558-70. PubMed ID: 25176655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone.
    Bersini S; Jeon JS; Dubini G; Arrigoni C; Chung S; Charest JL; Moretti M; Kamm RD
    Biomaterials; 2014 Mar; 35(8):2454-61. PubMed ID: 24388382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.