These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27161885)

  • 1. Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation.
    Ma W; Soroush A; Van Anh Luong T; Brennan G; Rahaman MS; Asadishad B; Tufenkji N
    Water Res; 2016 Aug; 99():188-199. PubMed ID: 27161885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance.
    Ma W; Soroush A; Luong TVA; Rahaman MS
    J Colloid Interface Sci; 2017 Sep; 501():330-340. PubMed ID: 28463764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroless deposition of copper nanoparticles integrates polydopamine coating on reverse osmosis membranes for efficient biofouling mitigation.
    Liu C; He Q; Song D; Jackson J; Faria AF; Jiang X; Li X; Ma J; Sun Z
    Water Res; 2022 Jun; 217():118375. PubMed ID: 35405551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation.
    Ben-Sasson M; Lu X; Bar-Zeev E; Zodrow KR; Nejati S; Qi G; Giannelis EP; Elimelech M
    Water Res; 2014 Oct; 62():260-70. PubMed ID: 24963888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties.
    Ben-Sasson M; Zodrow KR; Genggeng Q; Kang Y; Giannelis EP; Elimelech M
    Environ Sci Technol; 2014; 48(1):384-93. PubMed ID: 24308843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-Biofouling and Desalination Properties of Thin Film Composite Reverse Osmosis Membranes Modified with Copper and Iron Nanoparticles.
    Armendariz Ontiveros M; Quintero Y; Llanquilef A; Morel M; Argentel Martínez L; García García A; Garcia A
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31261628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes.
    Perreault F; Jaramillo H; Xie M; Ude M; Nghiem LD; Elimelech M
    Environ Sci Technol; 2016 Jun; 50(11):5840-8. PubMed ID: 27160324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable.
    Shakeri A; Salehi H; Ghorbani F; Amini M; Naslhajian H
    J Colloid Interface Sci; 2019 Feb; 536():328-338. PubMed ID: 30380432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spray Layer-by-Layer Assembled Clay Composite Thin Films as Selective Layers in Reverse Osmosis Membranes.
    Kovacs JR; Liu C; Hammond PT
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13375-83. PubMed ID: 26058008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Anti-Biofouling Performance of Thin -Film Composite Forward-Osmosis Membranes Containing Passive and Active Moieties.
    Qi L; Hu Y; Liu Z; An X; Bar-Zeev E
    Environ Sci Technol; 2018 Sep; 52(17):9684-9693. PubMed ID: 30074383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems.
    Herzberg M; Rezene TZ; Ziemba C; Gillor O; Mathee K
    Environ Sci Technol; 2009 Oct; 43(19):7376-83. PubMed ID: 19848149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of reverse osmosis membrane with graphene oxide and polyacrylic acid to control biofouling and mineral scaling.
    Ashfaq MY; Al-Ghouti MA; Zouari N
    Sci Total Environ; 2020 Sep; 736():139500. PubMed ID: 32479964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigating biofouling with a vanillin coating on thin film composite reverse osmosis membranes.
    Shin H; Park C; Lee CK; Lee YS; Kim JO
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1677-1685. PubMed ID: 31755056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.
    Wang X; Zhao Y; Yuan B; Wang Z; Li X; Ren Y
    Bioresour Technol; 2016 Feb; 202():50-8. PubMed ID: 26700758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engraving Polyamide Layers by
    Long L; Guo H; Zhang L; Gan Q; Wu C; Zhou S; Peng LE; Tang CY
    Environ Sci Technol; 2024 Apr; 58(14):6435-6443. PubMed ID: 38551393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity.
    Hegab HM; ElMekawy A; Barclay TG; Michelmore A; Zou L; Saint CP; Ginic-Markovic M
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18004-16. PubMed ID: 26214126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.
    Akhondi E; Wu B; Sun S; Marxer B; Lim W; Gu J; Liu L; Burkhardt M; McDougald D; Pronk W; Fane AG
    Water Res; 2015 Mar; 70():158-73. PubMed ID: 25528546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Engineering of Thin Film Composite Polyamide Membranes with Silver Nanoparticles through Layer-by-Layer Interfacial Polymerization for Antibacterial Properties.
    Liu Z; Qi L; An X; Liu C; Hu Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40987-40997. PubMed ID: 29111650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes.
    Rahaman MS; Thérien-Aubin H; Ben-Sasson M; Ober CK; Nielsen M; Elimelech M
    J Mater Chem B; 2014 Mar; 2(12):1724-1732. PubMed ID: 32261402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of biofouling with co-deposition of polydopamine and curcumin on the surface of a thin-film composite membrane.
    Park C; Lei J; Kim JO
    Chemosphere; 2023 Jan; 310():136910. PubMed ID: 36270524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.