BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 27162352)

  • 1. High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates.
    Watanabe-Nakayama T; Ono K; Itami M; Takahashi R; Teplow DB; Yamada M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5835-40. PubMed ID: 27162352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine structure study of Abeta1-42 fibrillogenesis with atomic force microscopy.
    Arimon M; Díez-Pérez I; Kogan MJ; Durany N; Giralt E; Sanz F; Fernàndez-Busquets X
    FASEB J; 2005 Aug; 19(10):1344-6. PubMed ID: 15919759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
    Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS
    Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation and fibril morphology of the Arctic mutation of Alzheimer's Aβ peptide by CD, TEM, STEM and in situ AFM.
    Norlin N; Hellberg M; Filippov A; Sousa AA; Gröbner G; Leapman RD; Almqvist N; Antzutkin ON
    J Struct Biol; 2012 Oct; 180(1):174-89. PubMed ID: 22750418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-amyloid fibril formation is promoted by step edges of highly oriented pyrolytic graphite.
    Losic D; Martin LL; Aguilar MI; Small DH
    Biopolymers; 2006; 84(5):519-26. PubMed ID: 16752395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Varying Concentrations of Docosahexaenoic Acid on Amyloid Beta (1⁻42) Aggregation: An Atomic Force Microscopy Study.
    Lee BY; Attwood SJ; Turnbull S; Leonenko Z
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitaxial assembly dynamics of mutant amyloid β25-35_N27C fibrils explored with time-resolved scanning force microscopy.
    Kellermayer MS; Murvai Ü; Horváth A; Lászlóffi E; Soós K; Penke B
    Biophys Chem; 2013 Dec; 184():54-61. PubMed ID: 24061043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.
    Abelein A; Jarvet J; Barth A; Gräslund A; Danielsson J
    J Am Chem Soc; 2016 Jun; 138(21):6893-902. PubMed ID: 27171340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alzheimer's amyloid fibrils: structure and assembly.
    Serpell LC
    Biochim Biophys Acta; 2000 Jul; 1502(1):16-30. PubMed ID: 10899428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide.
    Paravastu AK; Petkova AT; Tycko R
    Biophys J; 2006 Jun; 90(12):4618-29. PubMed ID: 16565054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.
    Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A
    J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers.
    Morinaga A; Hasegawa K; Nomura R; Ookoshi T; Ozawa D; Goto Y; Yamada M; Naiki H
    Biochim Biophys Acta; 2010 Apr; 1804(4):986-95. PubMed ID: 20100601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils.
    Petkova AT; Leapman RD; Guo Z; Yau WM; Mattson MP; Tycko R
    Science; 2005 Jan; 307(5707):262-5. PubMed ID: 15653506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution.
    Klinger AL; Kiselar J; Ilchenko S; Komatsu H; Chance MR; Axelsen PH
    Biochemistry; 2014 Dec; 53(49):7724-34. PubMed ID: 25382225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical manipulation of Alzheimer's amyloid beta1-42 fibrils.
    Karsai A; Mártonfalvi Z; Nagy A; Grama L; Penke B; Kellermayer MS
    J Struct Biol; 2006 Aug; 155(2):316-26. PubMed ID: 16713296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Observation of Amyloid Nucleation and Fibrillation by FastScan Atomic Force Microscopy.
    Huang Q; Wang H; Gao H; Cheng P; Zhu L; Wang C; Yang Y
    J Phys Chem Lett; 2019 Jan; 10(2):214-222. PubMed ID: 30543438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8-28) Amyloid Fibril.
    Gao Y; Zou Y; Ma Y; Wang D; Sun Y; Ma G
    Langmuir; 2016 Feb; 32(4):937-46. PubMed ID: 26796491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.