These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27162944)

  • 1. Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopy.
    Chen Q; Cho H; Manthiram K; Yoshida M; Ye X; Alivisatos AP
    ACS Cent Sci; 2015 Mar; 1(1):33-9. PubMed ID: 27162944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.
    Chen Q; Smith JM; Park J; Kim K; Ho D; Rasool HI; Zettl A; Alivisatos AP
    Nano Lett; 2013 Sep; 13(9):4556-61. PubMed ID: 23944844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ microscopy of the self-assembly of branched nanocrystals in solution.
    Sutter E; Sutter P; Tkachenko AV; Krahne R; de Graaf J; Arciniegas M; Manna L
    Nat Commun; 2016 Apr; 7():11213. PubMed ID: 27040366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution.
    Sutter P; Sutter E
    Acc Chem Res; 2021 Jan; 54(1):11-21. PubMed ID: 33315389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observing the Growth of Pb
    Wei W; Zhang H; Wang W; Dong M; Nie M; Sun L; Xu F
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24478-24484. PubMed ID: 31257843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy.
    Luo B; Smith JW; Ou Z; Chen Q
    Acc Chem Res; 2017 May; 50(5):1125-1133. PubMed ID: 28443654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with
    Wang M; Leff AC; Li Y; Woehl TJ
    ACS Nano; 2021 Feb; 15(2):2578-2588. PubMed ID: 33496576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Density Static Charges Governed Surface Activation for Long-Range Motion and Subsequent Growth of Au Nanocrystals.
    Chen G; Guo C; Cheng Y; Lu H; Cui J; Hu W; Jiang R; Jiang N
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30823673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Quantification of Interactions between Charged Nanorods in a Predefined Potential Energy Landscape.
    Cho H; Moreno-Hernandez IA; Jamali V; Oh MH; Alivisatos AP
    Nano Lett; 2021 Jan; 21(1):628-633. PubMed ID: 33275435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Liquid Cell TEM Reveals Bridge-Induced Contact and Fusion of Au Nanocrystals in Aqueous Solution.
    Jin B; Sushko ML; Liu Z; Jin C; Tang R
    Nano Lett; 2018 Oct; 18(10):6551-6556. PubMed ID: 30188138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudoelasticity at Large Strains in Au Nanocrystals.
    Gu XW; Hanson LA; Eisler CN; Koc MA; Alivisatos AP
    Phys Rev Lett; 2018 Aug; 121(5):056102. PubMed ID: 30118265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquid.
    Arciniegas MP; Castelli A; Brescia R; Serantes D; Ruta S; Hovorka O; Satoh A; Chantrell R; Pellegrino T
    Small; 2020 Jun; 16(25):e1907419. PubMed ID: 32459051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy.
    Hauwiller MR; Ye X; Jones MR; Chan CM; Calvin JJ; Crook MF; Zheng H; Alivisatos AP
    ACS Nano; 2020 Aug; 14(8):10239-10250. PubMed ID: 32806045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of colloidal one-dimensional nanocrystals.
    Zhang SY; Regulacio MD; Han MY
    Chem Soc Rev; 2014 Apr; 43(7):2301-23. PubMed ID: 24413386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Observations Reveal the Five-fold Twin-Involved Growth of Gold Nanorods by Particle Attachment.
    Sun Q; Boddapati L; Wang L; Li J; Deepak FL
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facet-selective etching trajectories of individual semiconductor nanocrystals.
    Yan C; Byrne D; Ondry JC; Kahnt A; Moreno-Hernandez IA; Kamat GA; Liu ZJ; Laube C; Crook MF; Zhang Y; Ercius P; Alivisatos AP
    Sci Adv; 2022 Aug; 8(32):eabq1700. PubMed ID: 35947667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopant Mediated Assembly of Cu
    Singh A; Singh A; Ong GK; Jones MR; Nordlund D; Bustillo K; Ciston J; Alivisatos AP; Milliron DJ
    Nano Lett; 2017 Jun; 17(6):3421-3428. PubMed ID: 28485598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virus-Sized Gold Nanorods: Plasmonic Particles for Biology.
    Murphy CJ; Chang HH; Falagan-Lotsch P; Gole MT; Hofmann DM; Hoang KNL; McClain SM; Meyer SM; Turner JG; Unnikrishnan M; Wu M; Zhang X; Zhang Y
    Acc Chem Res; 2019 Aug; 52(8):2124-2135. PubMed ID: 31373796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions and Attachment Pathways between Functionalized Gold Nanorods.
    Tan SF; Anand U; Mirsaidov U
    ACS Nano; 2017 Feb; 11(2):1633-1640. PubMed ID: 28117977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.