These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27163295)

  • 1. Natural marine sponges for bone tissue engineering: The state of art and future perspectives.
    Granito RN; Custódio MR; Rennó ACM
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1717-1727. PubMed ID: 27163295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges.
    Clarke SA; Choi SY; McKechnie M; Burke G; Dunne N; Walker G; Cunningham E; Buchanan F
    J Mater Sci Mater Med; 2016 Feb; 27(2):22. PubMed ID: 26704539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation.
    Parisi JR; Fernandes KR; Avanzi IR; Dorileo BP; Santana AF; Andrade AL; Gabbai-Armelin PR; Fortulan CA; Trichês ES; Granito RN; Renno ACM
    Mar Biotechnol (NY); 2019 Feb; 21(1):30-37. PubMed ID: 30218326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing.
    Rodriguez IA; Saxena G; Hixon KR; Sell SA; Bowlin GL
    J Biomed Mater Res A; 2016 Aug; 104(8):2011-9. PubMed ID: 27038217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Biocomposites Comprising Marine Collagen and Silica-Based Materials Inspired on the Composition of Marine Sponge Skeletons Envisaging Bone Tissue Regeneration.
    Martins E; Diogo GS; Pires R; Reis RL; Silva TH
    Mar Drugs; 2022 Nov; 20(11):. PubMed ID: 36421996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering.
    Pallela R; Venkatesan J; Janapala VR; Kim SK
    J Biomed Mater Res A; 2012 Feb; 100(2):486-95. PubMed ID: 22125128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and Cytotoxicity Evaluation of a Marine Sponge Biosilica.
    Gabbai-Armelin PR; Kido HW; Cruz MA; Prado JPS; Avanzi IR; Custódio MR; Renno ACM; Granito RN
    Mar Biotechnol (NY); 2019 Feb; 21(1):65-75. PubMed ID: 30443837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering.
    Goonoo N; Bhaw-Luximon A; Passanha P; Esteves SR; Jhurry D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1667-1684. PubMed ID: 27080439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study.
    Parisi JR; Fernandes KR; Aparecida do Vale GC; de França Santana A; de Almeida Cruz M; Fortulan CA; Zanotto ED; Peitl O; Granito RN; Rennó ACM
    J Biomater Appl; 2020 Aug; 35(2):205-214. PubMed ID: 32362163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen diffusion in marine-derived tissue engineering scaffolds.
    Boccardi E; Belova IV; Murch GE; Boccaccini AR; Fiedler T
    J Mater Sci Mater Med; 2015 Jun; 26(6):200. PubMed ID: 26111951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Customized hybrid biomimetic hydroxyapatite scaffold for bone tissue regeneration.
    Ciocca L; Lesci IG; Mezini O; Parrilli A; Ragazzini S; Rinnovati R; Romagnoli N; Roveri N; Scotti R
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):723-734. PubMed ID: 26708554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the In Vivo Biological Effects of Marine Collagen and Hydroxyapatite Composite in a Tibial Bone Defect Model in Rats.
    Parisi JR; Fernandes KR; de Almeida Cruz M; Avanzi IR; de França Santana A; do Vale GCA; de Andrade ALM; de Góes CP; Fortulan CA; de Sousa Trichês E; Granito RN; Rennó ACM
    Mar Biotechnol (NY); 2020 Jun; 22(3):357-366. PubMed ID: 32335738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials as potential and versatile platform for next generation tissue engineering applications.
    Singla R; Abidi SMS; Dar AI; Acharya A
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2433-2449. PubMed ID: 30690870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering.
    Toosi S; Naderi-Meshkin H; Kalalinia F; Peivandi MT; HosseinKhani H; Bahrami AR; Heirani-Tabasi A; Mirahmadi M; Behravan J
    J Biomed Mater Res A; 2016 Aug; 104(8):2020-8. PubMed ID: 27059133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material.
    Chen X; Gleeson SE; Yu T; Khan N; Yucha RW; Marcolongo M; Li CY
    J Biomed Mater Res A; 2017 Jun; 105(6):1786-1798. PubMed ID: 28198135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating processing techniques for bovine gelatin electrospun scaffolds for bone tissue regeneration.
    Taylor BL; Limaye A; Yarborough J; Freeman JW
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1131-1140. PubMed ID: 27017849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.