BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27163316)

  • 1. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A calibration-free c-VEP based BCI employing narrow-band random sequences.
    Zheng L; Dong Y; Tian S; Pei W; Gao X; Wang Y
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38513290
    [No Abstract]   [Full Text] [Related]  

  • 4. A multi-target brain-computer interface based on code modulated visual evoked potentials.
    Liu Y; Wei Q; Lu Z
    PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to build a fast and accurate code-modulated brain-computer interface.
    Ramírez Torres JA; Daly I
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33887702
    [No Abstract]   [Full Text] [Related]  

  • 8. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review.
    Martínez-Cagigal V; Thielen J; Santamaría-Vázquez E; Pérez-Velasco S; Desain P; Hornero R
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34763331
    [No Abstract]   [Full Text] [Related]  

  • 10. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces.
    Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience.
    Cabrera Castillos K; Ladouce S; Darmet L; Dehais F
    Neuroimage; 2023 Dec; 284():120446. PubMed ID: 37949256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural decoding of code modulated visual evoked potentials by spatio-temporal inverse filtering for brain computer interfaces.
    Sato JI; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1484-1487. PubMed ID: 28268607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications.
    Isaksen JL; Mohebbi A; Puthusserypady S
    PLoS One; 2017; 12(9):e0184785. PubMed ID: 28902895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-performance brain switch based on code-modulated visual evoked potentials.
    Zheng L; Pei W; Gao X; Zhang L; Wang Y
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051
    [No Abstract]   [Full Text] [Related]  

  • 18. Optimization of Visual Stimulus Sequence in a Brain-Computer Interface Based on Code Modulated Visual Evoked Potentials.
    Behboodi M; Mahnam A; Marateb H; Rabbani H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2762-2772. PubMed ID: 33320813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riemannian geometry-based transfer learning for reducing training time in c-VEP BCIs.
    Ying J; Wei Q; Zhou X
    Sci Rep; 2022 Jun; 12(1):9818. PubMed ID: 35701505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A BCI using VEP for continuous control of a mobile robot.
    Kapeller C; Hintermuller C; Abu-Alqumsan M; Pruckl R; Peer A; Guger C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5254-7. PubMed ID: 24110921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.