These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 27163546)
1. Cognitive training modifies disease symptoms in a mouse model of Huntington's disease. Yhnell E; Lelos MJ; Dunnett SB; Brooks SP Exp Neurol; 2016 Aug; 282():19-26. PubMed ID: 27163546 [TBL] [Abstract][Full Text] [Related]
2. Five choice serial reaction time performance in the HdhQ92 mouse model of Huntington's disease. Trueman RC; Dunnett SB; Jones L; Brooks SP Brain Res Bull; 2012 Jun; 88(2-3):163-70. PubMed ID: 22085744 [TBL] [Abstract][Full Text] [Related]
3. The operant serial implicit learning task reveals early onset motor learning deficits in the Hdh knock-in mouse model of Huntington's disease. Trueman RC; Brooks SP; Jones L; Dunnett SB Eur J Neurosci; 2007 Jan; 25(2):551-8. PubMed ID: 17284197 [TBL] [Abstract][Full Text] [Related]
4. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington's disease and control; probable implications to the disease biology. Choudhury KR; Das S; Bhattacharyya NP J Proteomics; 2016 Jan; 132():155-66. PubMed ID: 26581643 [TBL] [Abstract][Full Text] [Related]
5. Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington's disease. Ribeiro FM; Paquet M; Ferreira LT; Cregan T; Swan P; Cregan SP; Ferguson SS J Neurosci; 2010 Jan; 30(1):316-24. PubMed ID: 20053912 [TBL] [Abstract][Full Text] [Related]
6. The utilisation of operant delayed matching and non-matching to position for probing cognitive flexibility and working memory in mouse models of Huntington's disease. Yhnell E; Dunnett SB; Brooks SP J Neurosci Methods; 2016 May; 265():72-80. PubMed ID: 26321735 [TBL] [Abstract][Full Text] [Related]
7. Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity. Giralt A; Puigdellívol M; Carretón O; Paoletti P; Valero J; Parra-Damas A; Saura CA; Alberch J; Ginés S Hum Mol Genet; 2012 Mar; 21(6):1203-16. PubMed ID: 22116937 [TBL] [Abstract][Full Text] [Related]
8. Delayed Cell Cycle Progression in STHdh(Q111)/Hdh(Q111) Cells, a Cell Model for Huntington's Disease Mediated by microRNA-19a, microRNA-146a and microRNA-432. Das E; Jana NR; Bhattacharyya NP Microrna; 2015; 4(2):86-100. PubMed ID: 26165466 [TBL] [Abstract][Full Text] [Related]
9. A Longitudinal Operant Assessment of Cognitive and Behavioural Changes in the HdhQ111 Mouse Model of Huntington's Disease. Yhnell E; Dunnett SB; Brooks SP PLoS One; 2016; 11(10):e0164072. PubMed ID: 27701442 [TBL] [Abstract][Full Text] [Related]
10. Time course of choice reaction time deficits in the Hdh(Q92) knock-in mouse model of Huntington's disease in the operant serial implicit learning task (SILT). Trueman RC; Brooks SP; Jones L; Dunnett SB Behav Brain Res; 2008 Jun; 189(2):317-24. PubMed ID: 18367261 [TBL] [Abstract][Full Text] [Related]
11. Rule learning, visuospatial function and motor performance in the Hdh(Q92) knock-in mouse model of Huntington's disease. Trueman RC; Brooks SP; Jones L; Dunnett SB Behav Brain Res; 2009 Nov; 203(2):215-22. PubMed ID: 19445966 [TBL] [Abstract][Full Text] [Related]
12. Longitudinal analyses of operant performance on the serial implicit learning task (SILT) in the YAC128 Huntington's disease mouse line. Brooks SP; Jones L; Dunnett SB Brain Res Bull; 2012 Jun; 88(2-3):130-6. PubMed ID: 21763407 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdh(Q111)/Hdh(Q111) cells. Das E; Jana NR; Bhattacharyya NP Biochem Biophys Res Commun; 2013 Jul; 437(2):217-24. PubMed ID: 23796713 [TBL] [Abstract][Full Text] [Related]
15. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington's disease. Ghose J; Sinha M; Das E; Jana NR; Bhattacharyya NP PLoS One; 2011; 6(8):e23837. PubMed ID: 21887328 [TBL] [Abstract][Full Text] [Related]
16. Chromosome substitution strain assessment of a Huntington's disease modifier locus. Ramos EM; Kovalenko M; Guide JR; St Claire J; Gillis T; Mysore JS; Sequeiros J; Wheeler VC; Alonso I; MacDonald ME Mamm Genome; 2015 Apr; 26(3-4):119-30. PubMed ID: 25645993 [TBL] [Abstract][Full Text] [Related]
18. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Wheeler VC; Lebel LA; Vrbanac V; Teed A; te Riele H; MacDonald ME Hum Mol Genet; 2003 Feb; 12(3):273-81. PubMed ID: 12554681 [TBL] [Abstract][Full Text] [Related]
19. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease. Van Raamsdonk JM; Pearson J; Slow EJ; Hossain SM; Leavitt BR; Hayden MR J Neurosci; 2005 Apr; 25(16):4169-80. PubMed ID: 15843620 [TBL] [Abstract][Full Text] [Related]
20. Early onset deficits on the delayed alternation task in the Hdh(Q92) knock-in mouse model of Huntington's disease. Trueman RC; Jones L; Dunnett SB; Brooks SP Brain Res Bull; 2012 Jun; 88(2-3):156-62. PubMed ID: 21440047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]