BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 27163548)

  • 1. The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington's disease.
    Beaumont V; Mrzljak L; Dijkman U; Freije R; Heins M; Rassoulpour A; Tombaugh G; Gelman S; Bradaia A; Steidl E; Gleyzes M; Heikkinen T; Lehtimäki K; Puoliväli J; Kontkanen O; Javier RM; Neagoe I; Deisemann H; Winkler D; Ebneth A; Khetarpal V; Toledo-Sherman L; Dominguez C; Park LC; Munoz-Sanjuan I
    Exp Neurol; 2016 Aug; 282():99-118. PubMed ID: 27163548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-(6-phenylpyridazin-3-yl)benzenesulfonamides as highly potent, brain-permeable, and orally active kynurenine monooxygenase inhibitors.
    Kimura H; Suda H; Kassai M; Endo M; Deai Y; Yahata M; Miyajima M; Isobe Y
    Bioorg Med Chem Lett; 2021 Feb; 33():127753. PubMed ID: 33359168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington's disease.
    Thevandavakkam MA; Schwarcz R; Muchowski PJ; Giorgini F
    CNS Neurol Disord Drug Targets; 2010 Dec; 9(6):791-800. PubMed ID: 20942784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing and Modulating Kynurenine Pathway Dynamics in Huntington's Disease: Focus on Kynurenine 3-Monooxygenase.
    Sathyasaikumar KV; Breda C; Schwarcz R; Giorgini F
    Methods Mol Biol; 2018; 1780():397-413. PubMed ID: 29856028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a series of aryl pyrimidine kynurenine monooxygenase inhibitors as potential therapeutic agents for the treatment of Huntington's disease.
    Toledo-Sherman LM; Prime ME; Mrzljak L; Beconi MG; Beresford A; Brookfield FA; Brown CJ; Cardaun I; Courtney SM; Dijkman U; Hamelin-Flegg E; Johnson PD; Kempf V; Lyons K; Matthews K; Mitchell WL; O'Connell C; Pena P; Powell K; Rassoulpour A; Reed L; Reindl W; Selvaratnam S; Friley WW; Weddell DA; Went NE; Wheelan P; Winkler C; Winkler D; Wityak J; Yarnold CJ; Yates D; Munoz-Sanjuan I; Dominguez C
    J Med Chem; 2015 Feb; 58(3):1159-83. PubMed ID: 25590515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kynurenine 3-Monooxygenase Activity in Human Primary Neurons and Effect on Cellular Bioenergetics Identifies New Neurotoxic Mechanisms.
    Castellano-Gonzalez G; Jacobs KR; Don E; Cole NJ; Adams S; Lim CK; Lovejoy DB; Guillemin GJ
    Neurotox Res; 2019 Apr; 35(3):530-541. PubMed ID: 30666558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kynurenine 3-monooxygenase deficiency induces depression-like behavior via enhanced antagonism of α7 nicotinic acetylcholine receptors by kynurenic acid.
    Mori Y; Mouri A; Kunisawa K; Hirakawa M; Kubota H; Kosuge A; Niijima M; Hasegawa M; Kurahashi H; Murakami R; Hoshi M; Nakano T; Fujigaki S; Fujigaki H; Yamamoto Y; Nabeshima T; Saito K
    Behav Brain Res; 2021 May; 405():113191. PubMed ID: 33607168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Large Neutral Amino Acid Transporters Suppresses Kynurenic Acid Production Via Inhibition of Kynurenine Uptake in Rodent Brain.
    Sekine A; Kuroki Y; Urata T; Mori N; Fukuwatari T
    Neurochem Res; 2016 Sep; 41(9):2256-66. PubMed ID: 27161376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens.
    Giménez-Gómez P; Pérez-Hernández M; Gutiérrez-López MD; Vidal R; Abuin-Martínez C; O'Shea E; Colado MI
    Neuropharmacology; 2018 Jun; 135():581-591. PubMed ID: 29705534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi-QSAR analysis against Huntington's disease: A proposal to chemists!
    Amin SA; Adhikari N; Jha T; Gayen S
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5712-5718. PubMed ID: 27838184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures.
    Carpenedo R; Meli E; Peruginelli F; Pellegrini-Giampietro DE; Moroni F
    J Neurochem; 2002 Sep; 82(6):1465-71. PubMed ID: 12354294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate.
    Heyes MP; Saito K; Major EO; Milstien S; Markey SP; Vickers JH
    Brain; 1993 Dec; 116 ( Pt 6)():1425-50. PubMed ID: 8293279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila eye color mutants as therapeutic tools for Huntington disease.
    Green EW; Campesan S; Breda C; Sathyasaikumar KV; Muchowski PJ; Schwarcz R; Kyriacou CP; Giorgini F
    Fly (Austin); 2012; 6(2):117-20. PubMed ID: 22634544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington's disease.
    Sapko MT; Guidetti P; Yu P; Tagle DA; Pellicciari R; Schwarcz R
    Exp Neurol; 2006 Jan; 197(1):31-40. PubMed ID: 16099455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation of kynurenine 3-monooxygenase rescues plasma inflammatory cytokine levels in the R6/2 mouse model of Huntington's disease.
    Bondulich MK; Fan Y; Song Y; Giorgini F; Bates GP
    Sci Rep; 2021 Mar; 11(1):5484. PubMed ID: 33750843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease.
    Campesan S; Green EW; Breda C; Sathyasaikumar KV; Muchowski PJ; Schwarcz R; Kyriacou CP; Giorgini F
    Curr Biol; 2011 Jun; 21(11):961-6. PubMed ID: 21636279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perinatal kynurenine 3-hydroxylase inhibition in rodents: pathophysiological implications.
    Ceresoli-Borroni G; Guidetti P; Amori L; Pellicciari R; Schwarcz R
    J Neurosci Res; 2007 Mar; 85(4):845-54. PubMed ID: 17279543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of N-(6-(5-fluoro-2-(piperidin-1-yl)phenyl)pyridazin-3-yl)-1-(tetrahydro-2H-pyran-4-yl)methanesulfonamide as a brain-permeable and metabolically stable kynurenine monooxygenase inhibitor.
    Tsuboi K; Kimura H; Nakatsuji Y; Kassai M; Deai Y; Isobe Y
    Bioorg Med Chem Lett; 2021 Jul; 44():128115. PubMed ID: 34015507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid.
    Harris CA; Miranda AF; Tanguay JJ; Boegman RJ; Beninger RJ; Jhamandas K
    Br J Pharmacol; 1998 May; 124(2):391-9. PubMed ID: 9641558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinolinic acid formation in immune-activated mice: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(-3-nitrophenyl)thiazol-2yl]-benzenesul fonamide (Ro 61-8048), two potent and selective inhibitors of kynurenine hydroxylase.
    Chiarugi A; Moroni F
    Neuropharmacology; 1999 Aug; 38(8):1225-33. PubMed ID: 10462134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.