These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 27163548)
1. The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington's disease. Beaumont V; Mrzljak L; Dijkman U; Freije R; Heins M; Rassoulpour A; Tombaugh G; Gelman S; Bradaia A; Steidl E; Gleyzes M; Heikkinen T; Lehtimäki K; Puoliväli J; Kontkanen O; Javier RM; Neagoe I; Deisemann H; Winkler D; Ebneth A; Khetarpal V; Toledo-Sherman L; Dominguez C; Park LC; Munoz-Sanjuan I Exp Neurol; 2016 Aug; 282():99-118. PubMed ID: 27163548 [TBL] [Abstract][Full Text] [Related]
2. N-(6-phenylpyridazin-3-yl)benzenesulfonamides as highly potent, brain-permeable, and orally active kynurenine monooxygenase inhibitors. Kimura H; Suda H; Kassai M; Endo M; Deai Y; Yahata M; Miyajima M; Isobe Y Bioorg Med Chem Lett; 2021 Feb; 33():127753. PubMed ID: 33359168 [TBL] [Abstract][Full Text] [Related]
3. Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington's disease. Thevandavakkam MA; Schwarcz R; Muchowski PJ; Giorgini F CNS Neurol Disord Drug Targets; 2010 Dec; 9(6):791-800. PubMed ID: 20942784 [TBL] [Abstract][Full Text] [Related]
4. Assessing and Modulating Kynurenine Pathway Dynamics in Huntington's Disease: Focus on Kynurenine 3-Monooxygenase. Sathyasaikumar KV; Breda C; Schwarcz R; Giorgini F Methods Mol Biol; 2018; 1780():397-413. PubMed ID: 29856028 [TBL] [Abstract][Full Text] [Related]
5. Development of a series of aryl pyrimidine kynurenine monooxygenase inhibitors as potential therapeutic agents for the treatment of Huntington's disease. Toledo-Sherman LM; Prime ME; Mrzljak L; Beconi MG; Beresford A; Brookfield FA; Brown CJ; Cardaun I; Courtney SM; Dijkman U; Hamelin-Flegg E; Johnson PD; Kempf V; Lyons K; Matthews K; Mitchell WL; O'Connell C; Pena P; Powell K; Rassoulpour A; Reed L; Reindl W; Selvaratnam S; Friley WW; Weddell DA; Went NE; Wheelan P; Winkler C; Winkler D; Wityak J; Yarnold CJ; Yates D; Munoz-Sanjuan I; Dominguez C J Med Chem; 2015 Feb; 58(3):1159-83. PubMed ID: 25590515 [TBL] [Abstract][Full Text] [Related]
6. Kynurenine 3-Monooxygenase Activity in Human Primary Neurons and Effect on Cellular Bioenergetics Identifies New Neurotoxic Mechanisms. Castellano-Gonzalez G; Jacobs KR; Don E; Cole NJ; Adams S; Lim CK; Lovejoy DB; Guillemin GJ Neurotox Res; 2019 Apr; 35(3):530-541. PubMed ID: 30666558 [TBL] [Abstract][Full Text] [Related]
7. Kynurenine 3-monooxygenase deficiency induces depression-like behavior via enhanced antagonism of α7 nicotinic acetylcholine receptors by kynurenic acid. Mori Y; Mouri A; Kunisawa K; Hirakawa M; Kubota H; Kosuge A; Niijima M; Hasegawa M; Kurahashi H; Murakami R; Hoshi M; Nakano T; Fujigaki S; Fujigaki H; Yamamoto Y; Nabeshima T; Saito K Behav Brain Res; 2021 May; 405():113191. PubMed ID: 33607168 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Large Neutral Amino Acid Transporters Suppresses Kynurenic Acid Production Via Inhibition of Kynurenine Uptake in Rodent Brain. Sekine A; Kuroki Y; Urata T; Mori N; Fukuwatari T Neurochem Res; 2016 Sep; 41(9):2256-66. PubMed ID: 27161376 [TBL] [Abstract][Full Text] [Related]
9. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens. Giménez-Gómez P; Pérez-Hernández M; Gutiérrez-López MD; Vidal R; Abuin-Martínez C; O'Shea E; Colado MI Neuropharmacology; 2018 Jun; 135():581-591. PubMed ID: 29705534 [TBL] [Abstract][Full Text] [Related]
10. First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi-QSAR analysis against Huntington's disease: A proposal to chemists! Amin SA; Adhikari N; Jha T; Gayen S Bioorg Med Chem Lett; 2016 Dec; 26(23):5712-5718. PubMed ID: 27838184 [TBL] [Abstract][Full Text] [Related]
12. A mechanism of quinolinic acid formation by brain in inflammatory neurological disease. Attenuation of synthesis from L-tryptophan by 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. Heyes MP; Saito K; Major EO; Milstien S; Markey SP; Vickers JH Brain; 1993 Dec; 116 ( Pt 6)():1425-50. PubMed ID: 8293279 [TBL] [Abstract][Full Text] [Related]
13. Drosophila eye color mutants as therapeutic tools for Huntington disease. Green EW; Campesan S; Breda C; Sathyasaikumar KV; Muchowski PJ; Schwarcz R; Kyriacou CP; Giorgini F Fly (Austin); 2012; 6(2):117-20. PubMed ID: 22634544 [TBL] [Abstract][Full Text] [Related]
14. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington's disease. Sapko MT; Guidetti P; Yu P; Tagle DA; Pellicciari R; Schwarcz R Exp Neurol; 2006 Jan; 197(1):31-40. PubMed ID: 16099455 [TBL] [Abstract][Full Text] [Related]
15. Ablation of kynurenine 3-monooxygenase rescues plasma inflammatory cytokine levels in the R6/2 mouse model of Huntington's disease. Bondulich MK; Fan Y; Song Y; Giorgini F; Bates GP Sci Rep; 2021 Mar; 11(1):5484. PubMed ID: 33750843 [TBL] [Abstract][Full Text] [Related]
16. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease. Campesan S; Green EW; Breda C; Sathyasaikumar KV; Muchowski PJ; Schwarcz R; Kyriacou CP; Giorgini F Curr Biol; 2011 Jun; 21(11):961-6. PubMed ID: 21636279 [TBL] [Abstract][Full Text] [Related]