BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27163736)

  • 1. Smartphone spectrometer for colorimetric biosensing.
    Wang Y; Liu X; Chen P; Tran NT; Zhang J; Chia WS; Boujday S; Liedberg B
    Analyst; 2016 May; 141(11):3233-8. PubMed ID: 27163736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Real-Time Detection Method of Hg
    Gu Y; Jiao L; Cao F; Liu X; Zhou Y; Yang C; Gao Z; Zhang M; Lin P; Han Y; Dong D
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer.
    Long KD; Woodburn EV; Le HM; Shah UK; Lumetta SS; Cunningham BT
    Lab Chip; 2017 Sep; 17(19):3246-3257. PubMed ID: 28752875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone.
    Wu TH; Chang CC; Vaillant J; Bruyant A; Lin CW
    Lab Chip; 2016 Nov; 16(23):4527-4533. PubMed ID: 27778010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor.
    Zhang J; Khan I; Zhang Q; Liu X; Dostalek J; Liedberg B; Wang Y
    Biosens Bioelectron; 2018 Jan; 99():312-317. PubMed ID: 28787676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Smartphone-Based Colorimetric Reader for Human C-Reactive Protein Immunoassay.
    Venkatesh AG; van Oordt T; Schneider EM; Zengerle R; von Stetten F; Luong JH; Vashist SK
    Methods Mol Biol; 2017; 1571():343-356. PubMed ID: 28281266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sunlight based handheld smartphone spectrometer.
    Jian D; Wang B; Huang H; Meng X; Liu C; Xue L; Liu F; Wang S
    Biosens Bioelectron; 2019 Oct; 143():111632. PubMed ID: 31479987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP.
    Man Y; Ban M; Li A; Jin X; Du Y; Pan L
    Food Chem; 2021 Aug; 354():129578. PubMed ID: 33756331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets.
    Vashist SK; van Oordt T; Schneider EM; Zengerle R; von Stetten F; Luong JH
    Biosens Bioelectron; 2015 May; 67():248-55. PubMed ID: 25168283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid.
    Kong L; Gan Y; Liang T; Zhong L; Pan Y; Kirsanov D; Legin A; Wan H; Wang P
    Anal Chim Acta; 2020 Jan; 1093():150-159. PubMed ID: 31735208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-based portable wireless optical system for the detection of target analytes.
    Gautam S; Batule BS; Kim HY; Park KS; Park HG
    Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27906513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Paper-Based Colorimetric Assays With a Smartphone Spectrometer.
    Woodburn EV; Long KD; Cunningham BT;
    IEEE Sens J; 2019 Jun; 19(2):508-514. PubMed ID: 31579394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable Smartphone-based Colorimetric Analyzer with Enhanced Gold Nanoparticles for On-site Tests of Seafood Safety.
    Zhong L; Sun J; Gan Y; Zhou S; Wan Z; Zou Q; Su K; Wang P
    Anal Sci; 2019; 35(2):133-140. PubMed ID: 30745510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone-based immunosensor for CA125 detection.
    Hosu O; Ravalli A; Lo Piccolo GM; Cristea C; Sandulescu R; Marrazza G
    Talanta; 2017 May; 166():234-240. PubMed ID: 28213228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of DNA aptamers against Human Cardiac Troponin I for colorimetric sensor based dot blot application.
    Dorraj GS; Rassaee MJ; Latifi AM; Pishgoo B; Tavallaei M
    J Biotechnol; 2015 Aug; 208():80-6. PubMed ID: 26003883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated liposome-based microfluidic strategy for rapid colorimetric analysis: A case study of microRNA-21 detection.
    Zeng X; Wang L; Liu C; Zhang J; Shi HW; Shen W; Kong D; Huang C; Lee HK; Tang S
    Talanta; 2024 May; 272():125838. PubMed ID: 38430866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-based colorimetric detection of cardiac troponin T via label-free aptasensing.
    Ulloa-Gomez AM; Agredo A; Lucas A; Somvanshi SB; Stanciu L
    Biosens Bioelectron; 2023 Feb; 222():114938. PubMed ID: 36462432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation.
    Zhao W; Chiuman W; Brook MA; Li Y
    Chembiochem; 2007 May; 8(7):727-31. PubMed ID: 17410623
    [No Abstract]   [Full Text] [Related]  

  • 20. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone.
    Chen Y; Fu Q; Li D; Xie J; Ke D; Song Q; Tang Y; Wang H
    Anal Bioanal Chem; 2017 Nov; 409(28):6567-6574. PubMed ID: 28871402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.