These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27164045)

  • 1. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.
    Jensen J; Olesen JB; Stuart MB; Hansen PM; Nielsen MB; Jensen JA
    Ultrasonics; 2016 Aug; 70():136-46. PubMed ID: 27164045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy and reproducibility of a novel dynamic volume flow measurement method.
    Ricci S; Cinthio M; Ahlgren AR; Tortoli P
    Ultrasound Med Biol; 2013 Oct; 39(10):1903-14. PubMed ID: 23849385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume flow in arteriovenous fistulas using vector velocity ultrasound.
    Hansen PM; Olesen JB; Pihl MJ; Lange T; Heerwagen S; Pedersen MM; Rix M; Lönn L; Jensen JA; Nielsen MB
    Ultrasound Med Biol; 2014 Nov; 40(11):2707-14. PubMed ID: 25282482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound imaging velocimetry: effect of beam sweeping on velocity estimation.
    Zhou B; Fraser KH; Poelma C; Mari JM; Eckersley RJ; Weinberg PD; Tang MX
    Ultrasound Med Biol; 2013 Sep; 39(9):1672-81. PubMed ID: 23791353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of transverse oscillation method.
    Udesen J; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):959-71. PubMed ID: 16764450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.
    Mynard JP; Steinman DA
    Ultrasound Med Biol; 2013 May; 39(5):870-81. PubMed ID: 23453373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate blood peak velocity estimation using spectral models and vector doppler.
    Ricci S; Vilkomerson D; Matera R; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):686-96. PubMed ID: 25881346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector-velocity estimation in swept-scan using a K-space approach.
    Jeng GS; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):947-58. PubMed ID: 16764449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Ultrasound-Measured Flow Rate and Wall Shear Rate in Wrist Arteries Using Flow Phantoms.
    Zhou X; Xia C; Khan F; Corner GA; Huang Z; Hoskins PR
    Ultrasound Med Biol; 2016 Mar; 42(3):815-23. PubMed ID: 26742894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo comparison of three ultrasound vector velocity techniques to MR phase contrast angiography.
    Hansen KL; Udesen J; Oddershede N; Henze L; Thomsen C; Jensen JA; Nielsen MB
    Ultrasonics; 2009 Dec; 49(8):659-67. PubMed ID: 19473683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo validation of a blood vector velocity estimator with MR angiography.
    Hansen KL; Udesen J; Thomsen C; Jensen JA; Nielsen MB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):91-100. PubMed ID: 19213635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Angle-Independent Cross-Sectional Doppler Method for Flow Estimation in the Common Carotid Artery.
    van Knippenberg L; van Sloun RJG; Shulepov S; Bouwman RA; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1513-1524. PubMed ID: 32086206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the blood velocity vector using aperture domain data.
    Wang SL; Li ML; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jan; 54(1):70-8. PubMed ID: 17225801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
    Lenge M; Ramalli A; Tortoli P; Cachard C; Liebgott H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2126-37. PubMed ID: 26670852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of new ultrasound techniques for clinical imaging in selected liver and vascular applications.
    Brandt AH
    Dan Med J; 2018 Mar; 65(3):. PubMed ID: 29510811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theory to correct the systematic error caused by the imperfectly matched beam width to vessel diameter ratio on volumetric flow measurements using ultrasound techniques.
    Fei DY
    Ultrasound Med Biol; 1995; 21(8):1047-57. PubMed ID: 8553499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation methods for flow imaging with high frequency ultrasound.
    Aoudi W; Liebgott H; Needles A; Yang V; Foster FS; Vray D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e135-40. PubMed ID: 16844170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.