BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27164259)

  • 1. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
    Gand M; Thöle C; Müller H; Brundiek H; Bashiri G; Höhne M
    J Biotechnol; 2016 Jul; 230():11-8. PubMed ID: 27164259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biochemical characterization of three imine-reducing enzymes from Streptosporangium roseum DSM43021, Streptomyces turgidiscabies and Paenibacillus elgii.
    Scheller PN; Nestl BM
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10509-10520. PubMed ID: 27464826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivation and purification of two stereoselective imine reductases from Streptosporangium roseum and Paenibacillus elgii.
    Lenz M; Scheller PN; Richter SM; Hauer B; Nestl BM
    Protein Expr Purif; 2017 May; 133():199-204. PubMed ID: 27157442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the Imine Reductase Toolbox by Exploring the Bacterial Protein-Sequence Space.
    Wetzl D; Berrera M; Sandon N; Fishlock D; Ebeling M; Müller M; Hanlon S; Wirz B; Iding H
    Chembiochem; 2015 Aug; 16(12):1749-56. PubMed ID: 26044455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A NADPH-dependent (S)-imine reductase (SIR) from Streptomyces sp. GF3546 for asymmetric synthesis of optically active amines: purification, characterization, gene cloning, and expression.
    Mitsukura K; Kuramoto T; Yoshida T; Kimoto N; Yamamoto H; Nagasawa T
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8079-86. PubMed ID: 23263364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and activity of NADPH-dependent reductase Q1EQE0 from Streptomyces kanamyceticus, which catalyses the R-selective reduction of an imine substrate.
    Rodríguez-Mata M; Frank A; Wells E; Leipold F; Turner NJ; Hart S; Turkenburg JP; Grogan G
    Chembiochem; 2013 Jul; 14(11):1372-9. PubMed ID: 23813853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverting the Stereoselectivity of an NADH-Dependent Imine-Reductase Variant.
    Stockinger P; Borlinghaus N; Sharma M; Aberle B; Grogan G; Pleiss J; Nestl BM
    ChemCatChem; 2021 Dec; 13(24):5210-5215. PubMed ID: 35873105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, Activity and Stereoselectivity of NADPH-Dependent Oxidoreductases Catalysing the S-Selective Reduction of the Imine Substrate 2-Methylpyrroline.
    Man H; Wells E; Hussain S; Leipold F; Hart S; Turkenburg JP; Turner NJ; Grogan G
    Chembiochem; 2015 May; 16(7):1052-9. PubMed ID: 25809902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive amination of ketones catalyzed by whole cell biocatalysts containing imine reductases (IREDs).
    Maugeri Z; Rother D
    J Biotechnol; 2017 Sep; 258():167-170. PubMed ID: 28545904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of imine reductase-specific sequence motifs.
    Fademrecht S; Scheller PN; Nestl BM; Hauer B; Pleiss J
    Proteins; 2016 May; 84(5):600-10. PubMed ID: 26857686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Ketone Reduction by Imine Reductases.
    Lenz M; Meisner J; Quertinmont L; Lutz S; Kästner J; Nestl BM
    Chembiochem; 2017 Feb; 18(3):253-256. PubMed ID: 27911981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imine Reductases, Reductive Aminases, and Amine Oxidases for the Synthesis of Chiral Amines: Discovery, Characterization, and Synthetic Applications.
    Cosgrove SC; Brzezniak A; France SP; Ramsden JI; Mangas-Sanchez J; Montgomery SL; Heath RS; Turner NJ
    Methods Enzymol; 2018; 608():131-149. PubMed ID: 30173761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Characterization of an
    Meyer T; Zumbrägel N; Geerds C; Gröger H; Niemann HH
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled reactions on bioparticles: Stereoselective reduction with cofactor regeneration on PhaC inclusion bodies.
    Spieler V; Valldorf B; Maaß F; Kleinschek A; Hüttenhain SH; Kolmar H
    Biotechnol J; 2016 Jul; 11(7):890-8. PubMed ID: 26901842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H).
    Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D
    FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Saccharomyces cerevisiae reductase YOL151W mutants suitable for chiral alcohol synthesis using an NADH cofactor regeneration system.
    Yoon SA; Jung J; Park S; Kim HK
    J Microbiol Biotechnol; 2013 Feb; 23(2):218-24. PubMed ID: 23412065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in imine reductase-catalyzed reactions.
    Lenz M; Borlinghaus N; Weinmann L; Nestl BM
    World J Microbiol Biotechnol; 2017 Oct; 33(11):199. PubMed ID: 29022156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New imine-reducing enzymes from β-hydroxyacid dehydrogenases by single amino acid substitutions.
    Lenz M; Fademrecht S; Sharma M; Pleiss J; Grogan G; Nestl BM
    Protein Eng Des Sel; 2018 Apr; 31(4):109-120. PubMed ID: 29733377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.