BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27164313)

  • 1. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.
    Park SH; Kwon S
    Sci Data; 2016 May; 3():160031. PubMed ID: 27164313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angle-resolved photoemission spectra of graphene from first-principles calculations.
    Park CH; Giustino F; Spataru CD; Cohen ML; Louie SG
    Nano Lett; 2009 Dec; 9(12):4234-9. PubMed ID: 19856901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Unique Electronic Properties of Nano Structures Using Photoemission Theory.
    Kwon S; Choi WK
    Sci Rep; 2015 Dec; 5():17834. PubMed ID: 26634647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing the influence of point defects on the electronic band structure of graphene.
    Farjam M
    J Phys Condens Matter; 2014 Apr; 26(15):155502. PubMed ID: 24675693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of few-layer epitaxial graphene on Ru(0001).
    Sutter P; Hybertsen MS; Sadowski JT; Sutter E
    Nano Lett; 2009 Jul; 9(7):2654-60. PubMed ID: 19505134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.
    Lazar P; Zhang S; Safářová K; Li Q; Froning JP; Granatier J; Hobza P; Zbořil R; Besenbacher F; Dong M; Otyepka M
    ACS Nano; 2013 Feb; 7(2):1646-51. PubMed ID: 23346897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Molecular Orientation Observed Using Angle Resolved Photoemission Spectroscopy during Deposition of Pentacene on Graphite.
    Park SH; Kwon S
    Anal Chem; 2016 Apr; 88(8):4565-70. PubMed ID: 26999332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of 50 bp poly(dA)·poly(dT) DNA on highly oriented pyrolytic graphite via atomic force microscopy observation and molecular dynamics simulation.
    Doi K; Takeuchi H; Nii R; Akamatsu S; Kakizaki T; Kawano S
    J Chem Phys; 2013 Aug; 139(8):085102. PubMed ID: 24007039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.
    Bilić A; Sanvito S
    J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum interference channeling at graphene edges.
    Yang H; Mayne AJ; Boucherit M; Comtet G; Dujardin G; Kuk Y
    Nano Lett; 2010 Mar; 10(3):943-7. PubMed ID: 20151697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis(terpyridine)-based surface template structures on graphite: a force field and DFT study.
    Künzel D; Markert T; Gross A; Benoit DM
    Phys Chem Chem Phys; 2009 Oct; 11(39):8867-78. PubMed ID: 20449033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
    Kim KK; Kim SM; Lee YH
    Acc Chem Res; 2016 Mar; 49(3):390-9. PubMed ID: 26878595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the polycyclic aromatic hydrocarbon anisotropic potential with application to the exfoliation energy of graphite.
    Totton TS; Misquitta AJ; Kraft M
    J Phys Chem A; 2011 Nov; 115(46):13684-93. PubMed ID: 21967093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy of chemical bonding in semifluorinated graphite C2F revealed with angle-resolved X-ray absorption spectroscopy.
    Okotrub AV; Yudanov NF; Asanov IP; Vyalikh DV; Bulusheva LG
    ACS Nano; 2013 Jan; 7(1):65-74. PubMed ID: 23214423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First principles studies of the graphene-phenol interactions.
    Hernández JM; Anota EC; de la Cruz MT; Melchor MG; Cocoletzi GH
    J Mol Model; 2012 Aug; 18(8):3857-66. PubMed ID: 22415370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.
    Costescu BI; Gräter F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12582-90. PubMed ID: 24834440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical properties of graphene nano-flakes and quantum dots.
    Shi H; Barnard AS; Snook IK
    Nanoscale; 2012 Nov; 4(21):6761-7. PubMed ID: 22903345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite.
    Pascal TA; Karasawa N; Goddard WA
    J Chem Phys; 2010 Oct; 133(13):134114. PubMed ID: 20942530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.