BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27164314)

  • 1. Droplet immobilization within a polymeric organogel improves lipid bilayer durability and portability.
    Venkatesan GA; Sarles SA
    Lab Chip; 2016 May; 16(11):2116-25. PubMed ID: 27164314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract.
    Taylor GJ; Sarles SA
    Langmuir; 2015; 31(1):325-37. PubMed ID: 25514167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays.
    Nguyen MA; Srijanto B; Collier CP; Retterer ST; Sarles SA
    Lab Chip; 2016 Sep; 16(18):3576-88. PubMed ID: 27513561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible, voltage-activated formation of biomimetic membranes between triblock copolymer-coated aqueous droplets in good solvents.
    Tamaddoni N; Taylor G; Hepburn T; Michael Kilbey S; Sarles SA
    Soft Matter; 2016 Jun; 12(23):5096-109. PubMed ID: 27174295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Controlled Assembly and Characterization of a Droplet Interface Bilayer.
    Ringley JD; Sarles SA
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33938884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulating Networks of Droplet Interface Bilayers in a Thermoreversible Organogel.
    Challita EJ; Najem JS; Monroe R; Leo DJ; Freeman EC
    Sci Rep; 2018 Apr; 8(1):6494. PubMed ID: 29691447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks.
    Sarles SA; Leo DJ
    Lab Chip; 2010 Mar; 10(6):710-7. PubMed ID: 20221558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic platform for size-dependent generation of droplet interface bilayer networks on rails.
    Carreras P; Elani Y; Law RV; Brooks NJ; Seddon JM; Ces O
    Biomicrofluidics; 2015 Nov; 9(6):064121. PubMed ID: 26759638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop.
    Taylor G; Nguyen MA; Koner S; Freeman E; Collier CP; Sarles SA
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):335-343. PubMed ID: 30006208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering plant membranes using droplet interface bilayers.
    Barlow NE; Smpokou E; Friddin MS; Macey R; Gould IR; Turnbull C; Flemming AJ; Brooks NJ; Ces O; Barter LM
    Biomicrofluidics; 2017 Mar; 11(2):024107. PubMed ID: 28396711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation.
    Venkatesan GA; Lee J; Farimani AB; Heiranian M; Collier CP; Aluru NR; Sarles SA
    Langmuir; 2015 Dec; 31(47):12883-93. PubMed ID: 26556227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage control of droplet interface bilayer lipid membrane dimensions.
    Punnamaraju S; Steckl AJ
    Langmuir; 2011 Jan; 27(2):618-26. PubMed ID: 21142057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Formation of Honeycomb-Patterned Droplets Bounded by Interface Bilayers via Bimodal Molecular Adsorption.
    Fujiwara S; Shoji K; Watanabe C; Kawano R; Yanagisawa M
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer.
    Taylor GJ; Venkatesan GA; Collier CP; Sarles SA
    Soft Matter; 2015 Oct; 11(38):7592-605. PubMed ID: 26289743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical characteristics of droplet interface bilayers.
    Huang Y; Fuller GG; Chandran Suja V
    Adv Colloid Interface Sci; 2022 Jun; 304():102666. PubMed ID: 35429720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Ion-Channel Analysis in Droplet Interface Bilayer.
    Manafirad A
    Methods Mol Biol; 2021; 2186():187-195. PubMed ID: 32918738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids.
    Punnamaraju S; You H; Steckl AJ
    Langmuir; 2012 May; 28(20):7657-64. PubMed ID: 22548362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of temperature in the formation of human-mimetic artificial cell membranes using droplet interface bilayers (DIBs).
    Korner JL; Elvira KS
    Soft Matter; 2021 Oct; 17(39):8891-8901. PubMed ID: 34543370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaporation-induced monolayer compression improves droplet interface bilayer formation using unsaturated lipids.
    Venkatesan GA; Taylor GJ; Basham CM; Brady NG; Collier CP; Sarles SA
    Biomicrofluidics; 2018 Mar; 12(2):024101. PubMed ID: 29576833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrofluid-Based Droplet Interface Bilayer Networks.
    Makhoul-Mansour M; Zhao W; Gay N; O'Connor C; Najem JS; Mao L; Freeman EC
    Langmuir; 2017 Nov; 33(45):13000-13007. PubMed ID: 29043824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.