These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27164595)

  • 1. Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control.
    Zhu X; Liu J; Zhang D; Sheng X; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):254-264. PubMed ID: 27164595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation.
    Liu J; Sheng X; Zhang D; He J; Zhu X
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):166-76. PubMed ID: 25532196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards Zero Retraining for Myoelectric Control Based on Common Model Component Analysis.
    Liu J; Sheng X; Zhang D; Jiang N; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):444-54. PubMed ID: 25879963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoelectric walking mode classification for transtibial amputees.
    Miller JD; Beazer MS; Hahn ME
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2745-50. PubMed ID: 23708765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting training for myoelectric pattern recognition using Mixed-LDA.
    Liu J; Sheng X; Zhang D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():14-7. PubMed ID: 25569885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation.
    Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation analysis of electromyogram signals for multiuser myoelectric interfaces.
    Khushaba RN
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):745-55. PubMed ID: 24760933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A supervised feature projection for real-time multifunction myoelectric hand control.
    Chu JU; Moon I; Mun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2417-20. PubMed ID: 17945714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing.
    Ding Q; Zhao X; Han J; Bu C; Wu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1071-1080. PubMed ID: 30998472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal and twin SVM-based handgrip recognition for healthy subjects and trans-radial amputees using myoelectric signal.
    Arjunan SP; Kumar DK; Jayadeva J
    Biomed Tech (Berl); 2016 Feb; 61(1):87-94. PubMed ID: 26354833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control.
    Chen X; Zhang D; Zhu X
    J Neuroeng Rehabil; 2013 May; 10(1):44. PubMed ID: 23634939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptation strategy of using LDA classifier for EMG pattern recognition.
    Zhang H; Zhao Y; Yao F; Xu L; Shang P; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4267-70. PubMed ID: 24110675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Classification Method for Myoelectric Control of Hand Prostheses Inspired by Muscle Coordination.
    Patel GK; Castellini C; Hahne JM; Farina D; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1745-1755. PubMed ID: 30072332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.