These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2716506)

  • 1. Determination of halothane distribution in the rat head using 19F NMR technique.
    Wyrwicz AM; Conboy CB
    Magn Reson Med; 1989 Feb; 9(2):219-28. PubMed ID: 2716506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vivo study of halothane uptake and elimination in the rat brain with fluorine nuclear magnetic resonance spectroscopy.
    Litt L; González-Méndez R; James TL; Sessler DI; Mills P; Chew W; Moseley M; Pereira B; Severinghaus JW; Hamilton WK
    Anesthesiology; 1987 Aug; 67(2):161-8. PubMed ID: 3605742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain.
    Xu Y; Tang P; Zhang W; Firestone L; Winter PM
    Anesthesiology; 1995 Oct; 83(4):766-74. PubMed ID: 7574056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between the anaesthetic effect of halothane and saturable binding in brain.
    Evers AS; Berkowitz BA; d'Avignon DA
    Nature; 1987 Jul 9-15; 328(6126):157-60. PubMed ID: 3600792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo 19F NMR studies of hyperthermia: hydrophobic environments probed by halothane.
    Burt CT; Moore RR; Roberts MF
    NMR Biomed; 1993; 6(5):289-96. PubMed ID: 8268060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo 19F-NMR study of halothane distribution in brain.
    Wyrwicz AM; Conboy CB; Nichols BG; Ryback KR; Eisele P
    Biochim Biophys Acta; 1987 Jul; 929(3):271-7. PubMed ID: 3607085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-echo fluorine magnetic resonance imaging at 2 T: in vivo spatial distribution of halothane in the rabbit head.
    Chew WM; Moseley ME; Mills PA; Sessler D; González-Méndez R; James TL; Litt L
    Magn Reson Imaging; 1987; 5(1):51-6. PubMed ID: 3586872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple environments of fluorinated anesthetics in intact tissues observed with 19F NMR spectroscopy.
    Wyrwicz AM; Li YE; Schofield JC; Burt CT
    FEBS Lett; 1983 Oct; 162(2):334-8. PubMed ID: 6628676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fluorinated anesthetic halothane as a potential NMR biologic probe.
    Burt CT; Moore RR; Roberts MF; Brady TJ
    Biochim Biophys Acta; 1984 Dec; 805(4):375-81. PubMed ID: 6509092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition].
    Yuasa T; Miyatake T; Kuwabara T; Umeda M; Eguchi K
    No To Shinkei; 1983 Nov; 35(11):1089-95. PubMed ID: 6661335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the 19F NMR technique to observe binding of the general anesthetic halothane to human serum albumin.
    Shikii K; Sakurai S; Utsumi H; Seki H; Tashiro M
    Anal Sci; 2004 Oct; 20(10):1475-7. PubMed ID: 15524207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinically relevant concentration determination of inhaled anesthetics (halothane, isoflurane, sevoflurane, and desflurane) by 19F NMR.
    Mandal PK; Pettegrew JW
    Cell Biochem Biophys; 2008; 52(1):31-5. PubMed ID: 18719861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the cerebral distribution of general anesthetics in vivo by two-dimensional 19F chemical shift imaging.
    Venkatasubramanian PN; Shen YJ; Wyrwicz AM
    Magn Reson Med; 1996 Apr; 35(4):626-30. PubMed ID: 8992217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo fluorine-19 magnetic resonance spectroscopy of cerebral halothane in postoperative patients: preliminary results.
    Menon DK; Lockwood GG; Peden CJ; Cox IJ; Sargentoni J; Bell JD; Coutts GA; Whitwam JG
    Magn Reson Med; 1993 Dec; 30(6):680-4. PubMed ID: 8139449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field dependence of 19F NMR in rat bone powders.
    Code RF; Gelman N; Armstrong RL; Hallsworth RS; Lemaire C; Cheng PT
    Phys Med Biol; 1990 Sep; 35(9):1271-86. PubMed ID: 2236208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive observations of fluorinated anesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance.
    Wyrwicz AM; Pszenny MH; Schofield JC; Tillman PC; Gordon RE; Martin PA
    Science; 1983 Oct; 222(4622):428-30. PubMed ID: 6623084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive determination of cerebral blood flow changes by 19F NMR spectroscopy.
    Rudin M; Sauter A
    NMR Biomed; 1989 Sep; 2(3):98-103. PubMed ID: 2518156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 19F-nuclear magnetic resonance spectroscopy. Its use in defining molecular sites of anesthetic action.
    Evers AS; Dubois BW
    Ann N Y Acad Sci; 1991; 625():725-32. PubMed ID: 2058920
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibitory effect of isoflurane upon oxidative metabolism of halothane.
    Fiserova-Bergerova V
    Anesth Analg; 1984 Apr; 63(4):399-404. PubMed ID: 6703365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of in vivo hepatic halothane metabolism in rats using 19F NMR spectroscopy.
    Selinsky BS; Thompson M; London RE
    Biochem Pharmacol; 1987 Feb; 36(4):413-6. PubMed ID: 3827933
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.