BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 27165175)

  • 1. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries.
    Jache B; Binder JO; Abe T; Adelhelm P
    Phys Chem Chem Phys; 2016 Jun; 18(21):14299-316. PubMed ID: 27165175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation.
    Maibach J; Jeschull F; Brandell D; Edström K; Valvo M
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12373-12381. PubMed ID: 28338314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pillared graphite anodes for reversible sodiation.
    Zhang H; Li Z; Xu W; Chen Y; Ji X; Lerner MM
    Nanotechnology; 2018 Aug; 29(32):325402. PubMed ID: 29785969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindered Glymes for Graphite-Compatible Electrolytes.
    Shanmukaraj D; Grugeon S; Laruelle S; Armand M
    ChemSusChem; 2015 Aug; 8(16):2691-5. PubMed ID: 26212607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes.
    Song HY; Fukutsuka T; Miyazaki K; Abe T
    Phys Chem Chem Phys; 2016 Oct; 18(39):27486-27492. PubMed ID: 27711581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes.
    Yamada Y; Usui K; Chiang CH; Kikuchi K; Furukawa K; Yamada A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10892-9. PubMed ID: 24670260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvated Ion Intercalation in Graphite: Sodium and Beyond.
    Park J; Xu ZL; Kang K
    Front Chem; 2020; 8():432. PubMed ID: 32509735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena.
    Jache B; Adelhelm P
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10169-73. PubMed ID: 25056756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries.
    Jiang LL; Yan C; Yao YX; Cai W; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3402-3406. PubMed ID: 33107707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-Mediated, Reversible Ternary Graphite Intercalation Compounds for Extreme-Condition Li-Ion Batteries.
    Tao L; Xia D; Sittisomwong P; Zhang H; Lai J; Hwang S; Li T; Ma B; Hu A; Min J; Hou D; Shah SR; Zhao K; Yang G; Zhou H; Li L; Bai P; Shi F; Lin F
    J Am Chem Soc; 2024 Jun; 146(24):16764-74. PubMed ID: 38847794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-Solvent Interaction Mediated Lithium-Ion (De)intercalation Chemistry in Propylene Carbonate Based Electrolytes for Lithium-Sulfur Batteries.
    Liang H; Ma Z; Wang Y; Zhao F; Cao Z; Cavallo L; Li Q; Ming J
    ACS Nano; 2023 Sep; 17(18):18062-18073. PubMed ID: 37703060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-terminating, heterogeneous solid-electrolyte interphase enables reversible Li-ether cointercalation in graphite anodes.
    Xia D; Jeong H; Hou D; Tao L; Li T; Knight K; Hu A; Kamphaus EP; Nordlund D; Sainio S; Liu Y; Morris JR; Xu W; Huang H; Li L; Xiong H; Cheng L; Lin F
    Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313096121. PubMed ID: 38261613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications.
    Zhou W; Sit PH
    ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercalation chemistry of graphite: alkali metal ions and beyond.
    Li Y; Lu Y; Adelhelm P; Titirici MM; Hu YS
    Chem Soc Rev; 2019 Aug; 48(17):4655-4687. PubMed ID: 31294739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries.
    Xu ZL; Yoon G; Park KY; Park H; Tamwattana O; Joo Kim S; Seong WM; Kang K
    Nat Commun; 2019 Jun; 10(1):2598. PubMed ID: 31197187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and prospects of polyatomic ions' intercalation in the graphite layer for energy storage applications.
    Patil SB; Liao HJ; Wang DY
    Phys Chem Chem Phys; 2020 Nov; 22(43):24842-24855. PubMed ID: 33125020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Reversible Na-Intercalation into Graphite Recovered from Spent Li-Ion Batteries for High-Energy Na-Ion Capacitor.
    Divya ML; Natarajan S; Lee YS; Aravindan V
    ChemSusChem; 2020 Nov; 13(21):5654-5663. PubMed ID: 32876399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlayer Design of Pillared Graphite by Na-Halide Cluster Intercalation for Anode Materials of Sodium-Ion Batteries.
    Hwang T; Cho M; Cho K
    ACS Omega; 2021 Apr; 6(14):9492-9499. PubMed ID: 33869929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.