These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27165504)

  • 1. Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment.
    Maus I; Cibis KG; Bremges A; Stolze Y; Wibberg D; Tomazetto G; Blom J; Sczyrba A; König H; Pühler A; Schlüter A
    J Biotechnol; 2016 Aug; 232():50-60. PubMed ID: 27165504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant.
    Maus I; Cibis KG; Wibberg D; Winkler A; Stolze Y; König H; Pühler A; Schlüter A
    J Biotechnol; 2015 Jun; 203():17-8. PubMed ID: 25801333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.
    Stolze Y; Bremges A; Rumming M; Henke C; Maus I; Pühler A; Sczyrba A; Schlüter A
    Biotechnol Biofuels; 2016; 9():156. PubMed ID: 27462367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes.
    Maus I; Bremges A; Stolze Y; Hahnke S; Cibis KG; Koeck DE; Kim YS; Kreubel J; Hassa J; Wibberg D; Weimann A; Off S; Stantscheff R; Zverlov VV; Schwarz WH; König H; Liebl W; Scherer P; McHardy AC; Sczyrba A; Klocke M; Pühler A; Schlüter A
    Biotechnol Biofuels; 2017; 10():264. PubMed ID: 29158776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates.
    Maus I; Koeck DE; Cibis KG; Hahnke S; Kim YS; Langer T; Kreubel J; Erhard M; Bremges A; Off S; Stolze Y; Jaenicke S; Goesmann A; Sczyrba A; Scherer P; König H; Schwarz WH; Zverlov VV; Liebl W; Pühler A; Schlüter A; Klocke M
    Biotechnol Biofuels; 2016; 9():171. PubMed ID: 27525040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome analysis of Clostridium bornimense strain M2/40(T): A new acidogenic Clostridium species isolated from a mesophilic two-phase laboratory-scale biogas reactor.
    Tomazetto G; Hahnke S; Koeck DE; Wibberg D; Maus I; Pühler A; Klocke M; Schlüter A
    J Biotechnol; 2016 Aug; 232():38-49. PubMed ID: 26256097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial activity response to hydrogen injection in thermophilic anaerobic digesters revealed by genome-centric metatranscriptomics.
    Fontana A; Kougias PG; Treu L; Kovalovszki A; Valle G; Cappa F; Morelli L; Angelidaki I; Campanaro S
    Microbiome; 2018 Oct; 6(1):194. PubMed ID: 30368244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The completely annotated genome and comparative genomics of the Peptoniphilaceae bacterium str. ING2-D1G, a novel acidogenic bacterium isolated from a mesophilic biogas reactor.
    Tomazetto G; Hahnke S; Langer T; Wibberg D; Blom J; Maus I; Pühler A; Klocke M; Schlüter A
    J Biotechnol; 2017 Sep; 257():178-186. PubMed ID: 28595834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
    Zakrzewski M; Goesmann A; Jaenicke S; Jünemann S; Eikmeyer F; Szczepanowski R; Al-Soud WA; Sørensen S; Pühler A; Schlüter A
    J Biotechnol; 2012 Apr; 158(4):248-58. PubMed ID: 22342600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.
    Cibis KG; Gneipel A; König H
    J Biotechnol; 2016 Feb; 220():51-63. PubMed ID: 26779817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Analyses and Genome-Centered Metatranscriptomics of
    Hassa J; Wibberg D; Maus I; Pühler A; Schlüter A
    Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31861790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants.
    Hassa J; Maus I; Off S; Pühler A; Scherer P; Klocke M; Schlüter A
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5045-5063. PubMed ID: 29713790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Draft genome sequence of Herbinix hemicellulosilytica T3/55 T, a new thermophilic cellulose degrading bacterium isolated from a thermophilic biogas reactor.
    Koeck DE; Maus I; Wibberg D; Winkler A; Zverlov VV; Liebl W; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2015 Nov; 214():59-60. PubMed ID: 26253960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenome from a Spirulina digesting biogas reactor: analysis via binning of contigs and classification of short reads.
    Nolla-Ardèvol V; Peces M; Strous M; Tegetmeyer HE
    BMC Microbiol; 2015 Dec; 15():277. PubMed ID: 26680455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates.
    Lebuhn M; Hanreich A; Klocke M; Schlüter A; Bauer C; Pérez CM
    Anaerobe; 2014 Oct; 29():10-21. PubMed ID: 24785351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant.
    Bremges A; Maus I; Belmann P; Eikmeyer F; Winkler A; Albersmeier A; Pühler A; Schlüter A; Sczyrba A
    Gigascience; 2015; 4():33. PubMed ID: 26229594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.
    Kröber M; Bekel T; Diaz NN; Goesmann A; Jaenicke S; Krause L; Miller D; Runte KJ; Viehöver P; Pühler A; Schlüter A
    J Biotechnol; 2009 Jun; 142(1):38-49. PubMed ID: 19480946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
    Schlüter A; Bekel T; Diaz NN; Dondrup M; Eichenlaub R; Gartemann KH; Krahn I; Krause L; Krömeke H; Kruse O; Mussgnug JH; Neuweger H; Niehaus K; Pühler A; Runte KJ; Szczepanowski R; Tauch A; Tilker A; Viehöver P; Goesmann A
    J Biotechnol; 2008 Aug; 136(1-2):77-90. PubMed ID: 18597880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.
    Ortseifen V; Stolze Y; Maus I; Sczyrba A; Bremges A; Albaum SP; Jaenicke S; Fracowiak J; Pühler A; Schlüter A
    J Biotechnol; 2016 Aug; 231():268-279. PubMed ID: 27312700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants.
    Maus I; Wibberg D; Stantscheff R; Stolze Y; Blom J; Eikmeyer FG; Fracowiak J; König H; Pühler A; Schlüter A
    J Biotechnol; 2015 May; 201():43-53. PubMed ID: 25455016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.