BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27165894)

  • 1. The Interaction Between Heart Systole and Cerebral Circulation During Lower Body Negative Pressure Test.
    Magdalena K; Czosnyka M; Diehl RR; Haubrich C
    Acta Neurochir Suppl; 2016; 122():137-41. PubMed ID: 27165894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous transcranial Doppler and arterial blood pressure response to lower body negative pressure.
    Bondar RL; Kassam MS; Stein F; Dunphy PT; Riedesel ML
    J Clin Pharmacol; 1994 Jun; 34(6):584-9. PubMed ID: 7916019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral Arterial Time Constant Recorded from the MCA and PICA in Normal Subjects.
    Kasprowicz M; Czosnyka M; Poplawska K; Reinhard M
    Acta Neurochir Suppl; 2016; 122():211-4. PubMed ID: 27165908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous cerebrovascular and cardiovascular responses during presyncope.
    Bondar RL; Kassam MS; Stein F; Dunphy PT; Fortney S; Riedesel ML
    Stroke; 1995 Oct; 26(10):1794-800. PubMed ID: 7570727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral artery blood flow velocity changes following rapid release of lower body negative pressure.
    Balldin UI; Krock LP; Hopper NL; Squires WG
    Aviat Space Environ Med; 1996 Jan; 67(1):19-22. PubMed ID: 8929196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans.
    Levine BD; Giller CA; Lane LD; Buckey JC; Blomqvist CG
    Circulation; 1994 Jul; 90(1):298-306. PubMed ID: 8026012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.
    Rickards CA; Johnson BD; Harvey RE; Convertino VA; Joyner MJ; Barnes JN
    J Appl Physiol (1985); 2015 Sep; 119(6):677-85. PubMed ID: 26139213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebrovascular responses during lower body negative pressure-induced presyncope.
    Kuriyama K; Ueno T; Ballard RE; Cowings PS; Toscano WB; Watenpaugh DE; Hargens AR
    Aviat Space Environ Med; 2000 Oct; 71(10):1033-8. PubMed ID: 11051310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral critical closing pressure and CO2 responses during the progression toward syncope.
    Zuj KA; Arbeille P; Shoemaker JK; Hughson RL
    J Appl Physiol (1985); 2013 Mar; 114(6):801-7. PubMed ID: 23372147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular and cerebrovascular responses to progressive central hypovolemia in young smokers: a preliminary study.
    Miller AM; Fogt DL; Cooke WH
    Mil Med; 2014 Nov; 179(11):1325-30. PubMed ID: 25373062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.
    Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC
    Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain.
    Zhang R; Zuckerman JH; Levine BD
    J Appl Physiol (1985); 1998 Sep; 85(3):1113-22. PubMed ID: 9729590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes of human cerebral blood flow velocity and blood oxygen saturation under lower body negative pressure in upright seated position].
    Han WQ; Liu HF; Zhao FT; Ma RS; Cheng HW; Ni HY
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):170-3. PubMed ID: 12222570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models.
    Uryga A; Kasprowicz M; Calviello L; Diehl RR; Kaczmarska K; Czosnyka M
    J Clin Monit Comput; 2019 Feb; 33(1):85-94. PubMed ID: 29619647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity.
    Rickards CA; Ryan KL; Cooke WH; Convertino VA
    J Appl Physiol (1985); 2011 Oct; 111(4):1048-58. PubMed ID: 21799129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia.
    Kay VL; Rickards CA
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R375-83. PubMed ID: 26676249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypocapnia after traumatic brain injury: how does it affect the time constant of the cerebral circulation?
    Puppo C; Kasprowicz M; Steiner LA; Yelicich B; Lalou DA; Smielewski P; Czosnyka M
    J Clin Monit Comput; 2020 Jun; 34(3):461-468. PubMed ID: 31175502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of lower body negative pressure on cerebral circulation.
    Ueno T; Yoshimoto S; Mayanagi Y; Sekiguchi C; Yajima K
    Aviat Space Environ Med; 1993 Nov; 64(11):1006-10. PubMed ID: 8280032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of mild orthostatic stress on aortic-cerebral hemodynamic transmission: insight from the frequency domain.
    Sugawara J; Tomoto T; Imai T; Maeda S; Ogoh S
    Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H1076-H1084. PubMed ID: 28258058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diurnal variation in time to presyncope and associated circulatory changes during a controlled orthostatic challenge.
    Lewis NC; Atkinson G; Lucas SJ; Grant EJ; Jones H; Tzeng YC; Horsman H; Ainslie PN
    Am J Physiol Regul Integr Comp Physiol; 2010 Jul; 299(1):R55-61. PubMed ID: 20445156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.