These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 27166026)
1. A Universal and Straightforward Approach to Include Penetration Effects in Electrostatic Interaction Energy Estimation. Bojarowski SA; Kumar P; Dominiak PM Chemphyschem; 2016 Aug; 17(16):2455-60. PubMed ID: 27166026 [TBL] [Abstract][Full Text] [Related]
2. Universal Method for Electrostatic Interaction Energies Estimation with Charge Penetration and Easily Attainable Point Charges. Bojarowski SA; Kumar P; Wandtke CM; Dittrich B; Dominiak PM J Chem Theory Comput; 2018 Dec; 14(12):6336-6345. PubMed ID: 30359528 [TBL] [Abstract][Full Text] [Related]
3. Screened Electrostatic Interactions in Molecular Mechanics. Wang B; Truhlar DG J Chem Theory Comput; 2014 Oct; 10(10):4480-7. PubMed ID: 26588144 [TBL] [Abstract][Full Text] [Related]
4. General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field. Wang Q; Rackers JA; He C; Qi R; Narth C; Lagardere L; Gresh N; Ponder JW; Piquemal JP; Ren P J Chem Theory Comput; 2015 Jun; 11(6):2609-2618. PubMed ID: 26413036 [TBL] [Abstract][Full Text] [Related]
5. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Pitonák M; Riley KE; Neogrády P; Hobza P Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830 [TBL] [Abstract][Full Text] [Related]
6. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory. Lao KU; Schäffer R; Jansen G; Herbert JM J Chem Theory Comput; 2015 Jun; 11(6):2473-86. PubMed ID: 26575547 [TBL] [Abstract][Full Text] [Related]
7. Polarizable Drude Model with s-Type Gaussian or Slater Charge Density for General Molecular Mechanics Force Fields. Ghahremanpour MM; van Maaren PJ; Caleman C; Hutchison GR; van der Spoel D J Chem Theory Comput; 2018 Nov; 14(11):5553-5566. PubMed ID: 30281307 [TBL] [Abstract][Full Text] [Related]
8. Towards a force field based on density fitting. Piquemal JP; Cisneros GA; Reinhardt P; Gresh N; Darden TA J Chem Phys; 2006 Mar; 124(10):104101. PubMed ID: 16542062 [TBL] [Abstract][Full Text] [Related]
9. Including Charge Penetration Effects in Molecular Modeling. Wang B; Truhlar DG J Chem Theory Comput; 2010 Nov; 6(11):3330-42. PubMed ID: 26617087 [TBL] [Abstract][Full Text] [Related]
10. Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. Harder E; Anisimov VM; Vorobyov IV; Lopes PE; Noskov SY; MacKerell AD; Roux B J Chem Theory Comput; 2006 Nov; 2(6):1587-97. PubMed ID: 26627029 [TBL] [Abstract][Full Text] [Related]
11. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
12. A Comparative Study of Transferable Aspherical Pseudoatom Databank and Classical Force Fields for Predicting Electrostatic Interactions in Molecular Dimers. Kumar P; Bojarowski SA; Jarzembska KN; Domagała S; Vanommeslaeghe K; Mackerell AD; Dominiak PM J Chem Theory Comput; 2014 Apr; 10(4):1652-1664. PubMed ID: 24803869 [TBL] [Abstract][Full Text] [Related]
13. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains. Nagy PI; Erhardt PW J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368 [TBL] [Abstract][Full Text] [Related]
14. A fixed multi-site interaction charge model for an accurate prediction of the QM/MM interactions. Wang X; Li X; He X; Zhang JZH Phys Chem Chem Phys; 2021 Sep; 23(37):21001-21012. PubMed ID: 34522933 [TBL] [Abstract][Full Text] [Related]
15. An optimized charge penetration model for use with the AMOEBA force field. Rackers JA; Wang Q; Liu C; Piquemal JP; Ren P; Ponder JW Phys Chem Chem Phys; 2016 Dec; 19(1):276-291. PubMed ID: 27901142 [TBL] [Abstract][Full Text] [Related]
16. Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set. Flick JC; Kosenkov D; Hohenstein EG; Sherrill CD; Slipchenko LV J Chem Theory Comput; 2012 Aug; 8(8):2835-43. PubMed ID: 26592124 [TBL] [Abstract][Full Text] [Related]
17. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
18. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
19. Determination of structure and properties of molecular crystals from first principles. Szalewicz K Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310 [TBL] [Abstract][Full Text] [Related]
20. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]