These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 27166429)
1. Effect of quercetin on the uptake and efflux of aristolochic acid I from Caco-2 cell monolayers. Kimura O; Fujii Y; Haraguchi K; Ohta C; Koga N; Kato Y; Endo T J Pharm Pharmacol; 2016 Jul; 68(7):883-9. PubMed ID: 27166429 [TBL] [Abstract][Full Text] [Related]
2. Uptake of aristolochic acid I into Caco-2 cells by monocarboxylic acid transporters. Kimura O; Haraguchi K; Ohta C; Koga N; Kato Y; Endo T Biol Pharm Bull; 2014; 37(9):1475-9. PubMed ID: 25177030 [TBL] [Abstract][Full Text] [Related]
3. Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. Ma L; Qin Y; Shen Z; Bi H; Hu H; Huang M; Zhou H; Yu L; Jiang H; Zeng S J Ethnopharmacol; 2015 Aug; 172():430-5. PubMed ID: 26183576 [TBL] [Abstract][Full Text] [Related]
4. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Dahan A; Amidon GL Am J Physiol Gastrointest Liver Physiol; 2009 Aug; 297(2):G371-7. PubMed ID: 19541926 [TBL] [Abstract][Full Text] [Related]
5. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Wu X; Whitfield LR; Stewart BH Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037 [TBL] [Abstract][Full Text] [Related]
6. Effect of quercetin on the transport of N-acetyl 5-aminosalicylic acid. Kamishikiryo J; Matsumura R; Takamori T; Sugihara N J Pharm Pharmacol; 2013 Jul; 65(7):1037-43. PubMed ID: 23738731 [TBL] [Abstract][Full Text] [Related]
7. The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells. Ye L; Yang X; Yang Z; Gao S; Yin T; Liu W; Wang F; Hu M; Liu Z Toxicol Lett; 2013 Feb; 216(2-3):86-99. PubMed ID: 23200901 [TBL] [Abstract][Full Text] [Related]
8. Characterization of efflux transporters involved in distribution and disposition of apixaban. Zhang D; He K; Herbst JJ; Kolb J; Shou W; Wang L; Balimane PV; Han YH; Gan J; Frost CE; Humphreys WG Drug Metab Dispos; 2013 Apr; 41(4):827-35. PubMed ID: 23382458 [TBL] [Abstract][Full Text] [Related]
9. Characterization of efflux transport of the PDE5 inhibitors, vardenafil and sildenafil. Choi MK; Song IS J Pharm Pharmacol; 2012 Aug; 64(8):1074-83. PubMed ID: 22775210 [TBL] [Abstract][Full Text] [Related]
10. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers. Schutte ME; Freidig AP; van de Sandt JJ; Alink GM; Rietjens IM; Groten JP Toxicol Appl Pharmacol; 2006 Dec; 217(2):204-15. PubMed ID: 16997339 [TBL] [Abstract][Full Text] [Related]
11. Ochratoxin A secretion by ATP-dependent membrane transporters in Caco-2 cells. Schrickx J; Lektarau Y; Fink-Gremmels J Arch Toxicol; 2006 May; 80(5):243-9. PubMed ID: 16244858 [TBL] [Abstract][Full Text] [Related]
12. Uptake of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) from the apical membranes of the human intestinal Caco-2 cells. Kimura O; Tsukagoshi K; Hayasaka M; Endo T Arch Toxicol; 2012 Jan; 86(1):55-61. PubMed ID: 21766207 [TBL] [Abstract][Full Text] [Related]
13. Uptake of 4-chloro-2-methylphenoxyacetic acid (MCPA) from the apical membrane of Caco-2 cells by the monocarboxylic acid transporter. Kimura O; Tsukagoshi K; Endo T Toxicol Appl Pharmacol; 2008 Mar; 227(3):325-30. PubMed ID: 18096194 [TBL] [Abstract][Full Text] [Related]
14. Transepithelial transport of 4-chloro-2-methylphenoxyacetic acid (MCPA) across human intestinal Caco-2 cell monolayers. Kimura O; Tsukagoshi K; Hayasaka M; Endo T Basic Clin Pharmacol Toxicol; 2012 Jun; 110(6):530-6. PubMed ID: 22181038 [TBL] [Abstract][Full Text] [Related]
15. The role of P-glycoprotein in intestinal transport versus the BBB transport of tetraphenylphosphonium. Swed A; Eyal S; Madar I; Zohar-Kontante H; Weiss L; Hoffman A Mol Pharm; 2009; 6(6):1883-90. PubMed ID: 19722701 [TBL] [Abstract][Full Text] [Related]
16. Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model. Lin X; Skolnik S; Chen X; Wang J Drug Metab Dispos; 2011 Feb; 39(2):265-74. PubMed ID: 21051535 [TBL] [Abstract][Full Text] [Related]
17. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Determine the Disposition of Esculetin-7-O-Glucuronide and 4-Methylesculetin-7-O-Glucuronide. Li Y; Song W; Ou X; Luo G; Xie Y; Sun R; Wang Y; Qi X; Hu M; Liu Z; Zhu L Drug Metab Dispos; 2019 Mar; 47(3):203-214. PubMed ID: 30602435 [TBL] [Abstract][Full Text] [Related]
18. Breast cancer resistance protein BCRP (ABCG2)-mediated transepithelial nitrofurantoin secretion and its regulation in human intestinal epithelial (Caco-2) layers. Wright JA; Haslam IS; Coleman T; Simmons NL Eur J Pharmacol; 2011 Dec; 672(1-3):70-6. PubMed ID: 22004608 [TBL] [Abstract][Full Text] [Related]
19. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Dahan A; Sabit H; Amidon GL Drug Metab Dispos; 2009 Oct; 37(10):2028-36. PubMed ID: 19589874 [TBL] [Abstract][Full Text] [Related]
20. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Ming X; Knight BM; Thakker DR Mol Pharm; 2011 Oct; 8(5):1677-86. PubMed ID: 21780830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]