BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 27166518)

  • 1. Mitochondria as therapeutic targets in acute kidney injury.
    Hall AM; Schuh CD
    Curr Opin Nephrol Hypertens; 2016 Jul; 25(4):355-62. PubMed ID: 27166518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial function and disturbances in the septic kidney.
    Parikh SM; Yang Y; He L; Tang C; Zhan M; Dong Z
    Semin Nephrol; 2015 Jan; 35(1):108-19. PubMed ID: 25795504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function.
    Zhao C; Chen Z; Qi J; Duan S; Huang Z; Zhang C; Wu L; Zeng M; Zhang B; Wang N; Mao H; Zhang A; Xing C; Yuan Y
    Oncotarget; 2017 Mar; 8(13):20988-21000. PubMed ID: 28423497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of mitochondrial dynamics and mitophagy in sepsis-induced acute kidney injury.
    Liu JX; Yang C; Zhang WH; Su HY; Liu ZJ; Pan Q; Liu HF
    Life Sci; 2019 Oct; 235():116828. PubMed ID: 31479679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential.
    Zhang X; Agborbesong E; Li X
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Metabolism in Acute Kidney Injury.
    Clark AJ; Parikh SM
    Semin Nephrol; 2020 Mar; 40(2):101-113. PubMed ID: 32303274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-targeted therapies for acute kidney injury.
    Tábara LC; Poveda J; Martin-Cleary C; Selgas R; Ortiz A; Sanchez-Niño MD
    Expert Rev Mol Med; 2014 Aug; 16():e13. PubMed ID: 25104110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria: a therapeutic target in acute kidney injury.
    Ishimoto Y; Inagi R
    Nephrol Dial Transplant; 2016 Jul; 31(7):1062-9. PubMed ID: 26333547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dysfunction and the AKI-to-CKD transition.
    Jiang M; Bai M; Lei J; Xie Y; Xu S; Jia Z; Zhang A
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1105-F1116. PubMed ID: 33073587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes.
    Liu D; Jin F; Shu G; Xu X; Qi J; Kang X; Yu H; Lu K; Jiang S; Han F; You J; Du Y; Ji J
    Biomaterials; 2019 Aug; 211():57-67. PubMed ID: 31085359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2.
    Wang J; Zhu P; Li R; Ren J; Zhang Y; Zhou H
    Theranostics; 2020; 10(1):384-397. PubMed ID: 31903127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy in acute kidney injury.
    Kaushal GP; Shah SV
    Kidney Int; 2016 Apr; 89(4):779-91. PubMed ID: 26924060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury.
    Duann P; Lianos EA; Ma J; Lin PH
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27153058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases.
    Aranda-Rivera AK; Cruz-Gregorio A; Aparicio-Trejo OE; Pedraza-Chaverri J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury.
    Ruiz-Andres O; Suarez-Alvarez B; Sánchez-Ramos C; Monsalve M; Sanchez-Niño MD; Ruiz-Ortega M; Egido J; Ortiz A; Sanz AB
    Kidney Int; 2016 Feb; 89(2):399-410. PubMed ID: 26535995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner.
    Frank M; Duvezin-Caubet S; Koob S; Occhipinti A; Jagasia R; Petcherski A; Ruonala MO; Priault M; Salin B; Reichert AS
    Biochim Biophys Acta; 2012 Dec; 1823(12):2297-310. PubMed ID: 22917578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic.
    Ortega-Domínguez B; Aparicio-Trejo OE; García-Arroyo FE; León-Contreras JC; Tapia E; Molina-Jijón E; Hernández-Pando R; Sánchez-Lozada LG; Barrera-Oviedo D; Pedraza-Chaverri J
    Food Chem Toxicol; 2017 Sep; 107(Pt A):373-385. PubMed ID: 28698153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of N-acetyl-cysteine in mitochondria bioenergetics, oxidative stress, dynamics and S-glutathionylation alterations in acute kidney damage induced by folic acid.
    Aparicio-Trejo OE; Reyes-Fermín LM; Briones-Herrera A; Tapia E; León-Contreras JC; Hernández-Pando R; Sánchez-Lozada LG; Pedraza-Chaverri J
    Free Radic Biol Med; 2019 Jan; 130():379-396. PubMed ID: 30439416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury.
    Martin JL; Gruszczyk AV; Beach TE; Murphy MP; Saeb-Parsy K
    Pediatr Nephrol; 2019 Jul; 34(7):1167-1174. PubMed ID: 29860579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy.
    Molina-Jijón E; Aparicio-Trejo OE; Rodríguez-Muñoz R; León-Contreras JC; Del Carmen Cárdenas-Aguayo M; Medina-Campos ON; Tapia E; Sánchez-Lozada LG; Hernández-Pando R; Reyes JL; Arreola-Mendoza L; Pedraza-Chaverri J
    Biofactors; 2016 Nov; 42(6):686-702. PubMed ID: 27412471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.