These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27166592)

  • 1. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana.
    Pradhan N; Dipasquale L; d'Ippolito G; Fontana A; Panico A; Pirozzi F; Lens PNL; Esposito G
    Water Res; 2016 Aug; 99():225-234. PubMed ID: 27166592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch.
    Pradhan N; d'Ippolito G; Dipasquale L; Esposito G; Panico A; Lens PNL; Fontana A
    Bioresour Technol; 2021 Jul; 332():125127. PubMed ID: 33873006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields.
    Dipasquale L; Adessi A; d'Ippolito G; Rossi F; Fontana A; De Philippis R
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):1001-10. PubMed ID: 25467925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of Capnophilic Lactic Fermentation in the Hyperthermophilic Anaerobic Bacterium
    Esercizio N; Lanzilli M; Landi S; Caso L; Xu Z; Nuzzo G; Gallo C; Manzo E; Esposito S; Fontana A; d'Ippolito G
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production.
    Munro SA; Zinder SH; Walker LP
    Biotechnol Prog; 2009; 25(4):1035-42. PubMed ID: 19551880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana.
    d'Ippolito G; Dipasquale L; Fontana A
    ChemSusChem; 2014 Sep; 7(9):2678-83. PubMed ID: 25116280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostimulation of hyperthermophile Thermotoga neapolitana cultures.
    d'Ippolito G; Squadrito G; Tucci M; Esercizio N; Sardo A; Vastano M; Lanzilli M; Fontana A; Cristiani P
    Bioresour Technol; 2021 Jan; 319():124078. PubMed ID: 33254443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana.
    Eriksen NT; Nielsen TM; Iversen N
    Biotechnol Lett; 2008 Jan; 30(1):103-9. PubMed ID: 17849086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of CO
    Esercizio N; Lanzilli M; Vastano M; Xu Z; Landi S; Caso L; Gallo C; Nuzzo G; Manzo E; Fontana A; d'Ippolito G
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.
    Pradhan N; Dipasquale L; d'Ippolito G; Panico A; Lens PN; Esposito G; Fontana A
    Int J Mol Sci; 2015 Jun; 16(6):12578-600. PubMed ID: 26053393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana.
    Dreschke G; Papirio S; Scala A; Lens PNL; Esposito G
    Bioresour Technol; 2019 Dec; 293():122033. PubMed ID: 31472408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    d'Ippolito G; Landi S; Esercizio N; Lanzilli M; Vastano M; Dipasquale L; Pradhan N; Fontana A
    Front Microbiol; 2020; 11():171. PubMed ID: 32132982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of feed glucose and acetic acid on continuous biohydrogen production by Thermotoga neapolitana.
    Dreschke G; Papirio S; Sisinni DMG; Lens PNL; Esposito G
    Bioresour Technol; 2019 Feb; 273():416-424. PubMed ID: 30463055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition.
    Nguyen TA; Han SJ; Kim JP; Kim MS; Sim SJ
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S38-41. PubMed ID: 19361983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling Fermentative Synthesis of Molecular Hydrogen from Biomass Formation in Thermotoga maritima.
    Singh R; White D; Demirel Y; Kelly R; Noll K; Blum P
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate.
    Chen CC; Lin CY; Chang JS
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):56-64. PubMed ID: 11693934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of the Box-Wilson design model for bio-hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564).
    Alalayah WM; Kalil MS; Kadhum AA; Jahim J; Zaharim A; Alauj NM; El-Shafie A
    Pak J Biol Sci; 2010 Jul; 13(14):674-82. PubMed ID: 21848059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H(2) synthesis from pentoses and biomass in Thermotoga spp.
    Eriksen NT; Riis ML; Holm NK; Iversen N
    Biotechnol Lett; 2011 Feb; 33(2):293-300. PubMed ID: 20960218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus.
    Burgos-Rubio CN; Okos MR; Wankat PC
    Biotechnol Prog; 2000; 16(3):305-14. PubMed ID: 10835228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of process parameters on enhanced biohydrogen production from tequila vinasse via the lactate-acetate pathway.
    García-Depraect O; Rene ER; Diaz-Cruces VF; León-Becerril E
    Bioresour Technol; 2019 Feb; 273():618-626. PubMed ID: 30497061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.