These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27166815)

  • 1. The Aerotactic Response of Caulobacter crescentus.
    Morse M; Colin R; Wilson LG; Tang JX
    Biophys J; 2016 May; 110(9):2076-84. PubMed ID: 27166815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchannel-nanopore device for bacterial chemotaxis assays.
    Kovarik ML; Brown PJ; Kysela DT; Berne C; Kinsella AC; Brun YV; Jacobson SC
    Anal Chem; 2010 Nov; 82(22):9357-64. PubMed ID: 20961116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical motion of the cell body enhances Caulobacter crescentus motility.
    Liu B; Gulino M; Morse M; Tang JX; Powers TR; Breuer KS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11252-6. PubMed ID: 25053810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells.
    Li G; Tang JX
    Biophys J; 2006 Oct; 91(7):2726-34. PubMed ID: 16844761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-propelling and rolling of a sessile-motile aggregate of the bacterium Caulobacter crescentus.
    Zeng Y; Liu B
    Commun Biol; 2020 Oct; 3(1):587. PubMed ID: 33067555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flagellar Motor Switching in Caulobacter Crescentus Obeys First Passage Time Statistics.
    Morse M; Bell J; Li G; Tang JX
    Phys Rev Lett; 2015 Nov; 115(19):198103. PubMed ID: 26588419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OmpW of Caulobacter crescentus Functions as an Outer Membrane Channel for Cations.
    Benz R; Jones MD; Younas F; Maier E; Modi N; Mentele R; Lottspeich F; Kleinekathöfer U; Smit J
    PLoS One; 2015; 10(11):e0143557. PubMed ID: 26606672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular adsorption steers bacterial swimming at the air/water interface.
    Morse M; Huang A; Li G; Maxey MR; Tang JX
    Biophys J; 2013 Jul; 105(1):21-8. PubMed ID: 23823220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered motility of Caulobacter Crescentus in viscous and viscoelastic media.
    Gao Y; Neubauer M; Yang A; Johnson N; Morse M; Li G; Tang JX
    BMC Microbiol; 2014 Dec; 14():322. PubMed ID: 25539737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.
    Badger JH; Hoover TR; Brun YV; Weiner RM; Laub MT; Alexandre G; Mrázek J; Ren Q; Paulsen IT; Nelson KE; Khouri HM; Radune D; Sosa J; Dodson RJ; Sullivan SA; Rosovitz MJ; Madupu R; Brinkac LM; Durkin AS; Daugherty SC; Kothari SP; Giglio MG; Zhou L; Haft DH; Selengut JD; Davidsen TM; Yang Q; Zafar N; Ward NL
    J Bacteriol; 2006 Oct; 188(19):6841-50. PubMed ID: 16980487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus.
    Christen M; Christen B; Allan MG; Folcher M; Jenö P; Grzesiek S; Jenal U
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):4112-7. PubMed ID: 17360486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flagellar motor of
    Lele PP; Roland T; Shrivastava A; Chen Y; Berg HC
    Nat Phys; 2016 Feb; 12(2):175-178. PubMed ID: 27499800
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.
    Holtzendorff J; Reinhardt J; Viollier PH
    Bioessays; 2006 Apr; 28(4):355-61. PubMed ID: 16547950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle.
    Li F; Subramanian K; Chen M; Tyson JJ; Cao Y
    Phys Biol; 2016 Jun; 13(3):035007. PubMed ID: 27345750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway.
    Popp F; Armitage JP; Schüler D
    Nat Commun; 2014 Nov; 5():5398. PubMed ID: 25394370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development.
    Levi A; Jenal U
    J Bacteriol; 2006 Jul; 188(14):5315-8. PubMed ID: 16816207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplified effect of Brownian motion in bacterial near-surface swimming.
    Li G; Tam LK; Tang JX
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18355-9. PubMed ID: 19015518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle regulation in Caulobacter: location, location, location.
    Goley ED; Iniesta AA; Shapiro L
    J Cell Sci; 2007 Oct; 120(Pt 20):3501-7. PubMed ID: 17928306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.