These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27166816)

  • 1. Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations.
    Lu L; Li X; Vekilov PG; Karniadakis GE
    Biophys J; 2016 May; 110(9):2085-93. PubMed ID: 27166816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coarse-grain molecular dynamics model for sickle hemoglobin fibers.
    Li H; Lykotrafitis G
    J Mech Behav Biomed Mater; 2011 Feb; 4(2):162-73. PubMed ID: 21262494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of axial fiber contact residues impact sickle hemoglobin polymerization by perturbing a network of coupled interactions.
    Banerjee S; Mirsamadi N; Anantharaman L; Sivaram MV; Gupta RB; Choudhury D; Roy RP
    Protein J; 2007 Oct; 26(7):445-55. PubMed ID: 17514412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the stability of hemoglobin S double strands.
    Mu XQ; Makowski L; Magdoff-Fairchild B
    Biophys J; 1998 Jan; 74(1):655-68. PubMed ID: 9449367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers.
    Lu L; Li H; Bian X; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(1):48-59. PubMed ID: 28700924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the intermolecular contacts within sickle hemoglobin fibers: effect of site-specific substitutions, fiber pitch, and double-strand disorder.
    Watowich SJ; Gross LJ; Josephs R
    J Struct Biol; 1993; 111(3):161-79. PubMed ID: 8003379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural link between polymerization and sickle cell disease.
    Mirchev R; Ferrone FA
    J Mol Biol; 1997 Feb; 265(5):475-9. PubMed ID: 9048942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free heme and the polymerization of sickle cell hemoglobin.
    Uzunova VV; Pan W; Galkin O; Vekilov PG
    Biophys J; 2010 Sep; 99(6):1976-85. PubMed ID: 20858444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chain chirality on the self-assembly of sickle hemoglobin.
    Li X; Caswell B; Karniadakis GE
    Biophys J; 2012 Sep; 103(6):1130-40. PubMed ID: 22995485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights of inhibition in sickle hemoglobin polymerization upon glutathionylation: hydrogen/deuterium exchange mass spectrometry and molecular dynamics simulation-based approach.
    Das R; Mitra A; Mitra G; Maity D; Bhat V; Pal D; Ross C; Kurpad AV; Mandal AK
    Biochem J; 2018 Jul; 475(13):2153-2166. PubMed ID: 29858275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular insights into the irreversible mechanical behavior of sickle hemoglobin.
    Yesudasan S; Douglas SA; Platt MO; Wang X; Averett RD
    J Biomol Struct Dyn; 2019 Mar; 37(5):1270-1281. PubMed ID: 29651930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for the sickle hemoglobin fiber using both mutation sites.
    Roufberg A; Ferrone FA
    Protein Sci; 2000 May; 9(5):1031-4. PubMed ID: 10850813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of isotope exchange based mass spectrometry to understand the mechanism of inhibition of sickle hemoglobin polymerization upon oxygenation.
    Das R; Mitra A; Bhat V; Mandal AK
    J Struct Biol; 2017 Jul; 199(1):76-83. PubMed ID: 28465180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetics of nucleation and growth of sickle cell hemoglobin fibers.
    Galkin O; Nagel RL; Vekilov PG
    J Mol Biol; 2007 Jan; 365(2):425-39. PubMed ID: 17069853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling sickle hemoglobin fibers as one chain of coarse-grained particles.
    Li H; Ha V; Lykotrafitis G
    J Biomech; 2012 Jul; 45(11):1947-51. PubMed ID: 22673758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular contacts within sickle hemoglobin fibers.
    Watowich SJ; Gross LJ; Josephs R
    J Mol Biol; 1989 Oct; 209(4):821-8. PubMed ID: 2585512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Binding Free Energy and Molecular Origin of Sickle Cell Hemoglobin Aggregation.
    Galamba N; Pipolo S
    J Phys Chem B; 2018 Aug; 122(30):7475-7483. PubMed ID: 29995412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band 3 catalyzes sickle hemoglobin polymerization.
    Rotter MA; Chu H; Low PS; Ferrone FA
    Biophys Chem; 2010 Feb; 146(2-3):55-9. PubMed ID: 19880238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers.
    Galkin O; Pan W; Filobelo L; Hirsch RE; Nagel RL; Vekilov PG
    Biophys J; 2007 Aug; 93(3):902-13. PubMed ID: 17449671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linkage of interactions in sickle hemoglobin fiber assembly: inhibitory effect emanating from mutations in the AB region of the alpha-chain is annulled by a mutation at its EF corner.
    Sudha R; Anantharaman L; Sivaram MV; Mirsamadi N; Choudhury D; Lohiya NK; Gupta RB; Roy RP
    J Biol Chem; 2004 May; 279(19):20018-27. PubMed ID: 14982923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.