These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27167069)

  • 1. Partially Hydrogenated Graphene Materials Exhibit High Electrocatalytic Activities Related to Unintentional Doping with Metallic Impurities.
    Jankovský O; Libánská A; Bouša D; Sedmidubský D; Matějková S; Sofer Z
    Chemistry; 2016 Jun; 22(25):8627-34. PubMed ID: 27167069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrapure Graphene Is a Poor Electrocatalyst: Definitive Proof of the Key Role of Metallic Impurities in Graphene-Based Electrocatalysis.
    Mazánek V; Luxa J; Matějková S; Kučera J; Sedmidubský D; Pumera M; Sofer Z
    ACS Nano; 2019 Feb; 13(2):1574-1582. PubMed ID: 30624902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry.
    Eng AY; Sofer Z; Huber Š; Bouša D; Maryško M; Pumera M
    Chemistry; 2015 Nov; 21(47):16828-38. PubMed ID: 26457373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.
    Eng AY; Sofer Z; Šimek P; Kosina J; Pumera M
    Chemistry; 2013 Nov; 19(46):15583-92. PubMed ID: 24123303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Step Synthesis of B/N Co-doped Graphene as Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Synergistic Effect of Impurities.
    Mazánek V; Matějková S; Sedmidubský D; Pumera M; Sofer Z
    Chemistry; 2018 Jan; 24(4):928-936. PubMed ID: 29071752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides.
    Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M
    ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities.
    Tan SM; Ambrosi A; Khezri B; Webster RD; Pumera M
    Phys Chem Chem Phys; 2014 Apr; 16(15):7058-65. PubMed ID: 24615543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.
    Sofer Z; Jankovský O; Šimek P; Soferová L; Sedmidubský D; Pumera M
    Nanoscale; 2014 Feb; 6(4):2153-60. PubMed ID: 24366534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphane and hydrogenated graphene.
    Pumera M; Wong CH
    Chem Soc Rev; 2013 Jul; 42(14):5987-95. PubMed ID: 23686139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications.
    Moo JG; Ambrosi A; Bonanni A; Pumera M
    Chem Asian J; 2012 Apr; 7(4):759-70. PubMed ID: 22298372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis.
    Sheng ZH; Shao L; Chen JJ; Bao WJ; Wang FB; Xia XH
    ACS Nano; 2011 Jun; 5(6):4350-8. PubMed ID: 21574601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus and Halogen Co-Doped Graphene Materials and their Electrochemistry.
    Wang L; Sofer Z; Zboril R; Cepe K; Pumera M
    Chemistry; 2016 Oct; 22(43):15444-15450. PubMed ID: 27608178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis.
    Toh RJ; Poh HL; Sofer Z; Pumera M
    Chem Asian J; 2013 Jun; 8(6):1295-300. PubMed ID: 23495248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants.
    Eng AY; Ambrosi A; Chua CK; Saněk F; Sofer Z; Pumera M
    Chemistry; 2013 Sep; 19(38):12673-83. PubMed ID: 23934966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation of Fluorographite and Fluorographene: An Easy Way to Produce Highly Hydrogenated Graphene.
    Bouša D; Mazánek V; Sedmidubský D; Jankovský O; Pumera M; Sofer Z
    Chemistry; 2018 Jun; 24(33):8350-8360. PubMed ID: 29582493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal-depleted graphenes for electrochemical applications via reduction of CO₂ by lithium.
    Poh HL; Sofer Z; Luxa J; Pumera M
    Small; 2014 Apr; 10(8):1529-35. PubMed ID: 24344051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements.
    Wong CH; Sofer Z; Kubešová M; Kučera J; Matějková S; Pumera M
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13774-9. PubMed ID: 25201990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-nitrogen doping of mesoporous carbon/graphene nanosheets by self-templating for oxygen reduction electrocatalysts.
    Li S; Wu D; Liang H; Wang J; Zhuang X; Mai Y; Su Y; Feng X
    ChemSusChem; 2014 Nov; 7(11):3002-6. PubMed ID: 25213723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.
    Sofer Z; Jankovský O; Šimek P; Klímová K; Macková A; Pumera M
    ACS Nano; 2014 Jul; 8(7):7106-14. PubMed ID: 24979344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical preparation of graphene materials results in extensive unintentional doping with heteroatoms and metals.
    Chua CK; Ambrosi A; Sofer Z; Macková A; Havránek V; Tomandl I; Pumera M
    Chemistry; 2014 Nov; 20(48):15760-7. PubMed ID: 25284355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.