These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27167069)

  • 21. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zbořil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-Doping of Activated Graphene for Synergistically Enhanced Electrocatalytic Oxygen Reduction Reaction.
    Hassan M; Haque E; Minett AI; Gomes VG
    ChemSusChem; 2015 Dec; 8(23):4040-8. PubMed ID: 26564337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Planar Polyolefin Nanostripes: Perhydrogenated Graphene.
    Bouša D; Huber Š; Sedmidubský D; Pumera M; Sofer Z
    Chemistry; 2017 Sep; 23(49):11961-11968. PubMed ID: 28639289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.
    Ambrosi A; Chua CK; Khezri B; Sofer Z; Webster RD; Pumera M
    Proc Natl Acad Sci U S A; 2012 Aug; 109(32):12899-904. PubMed ID: 22826262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metallic impurities availability in reduced graphene is greatly enhanced by its ultrasonication.
    Toh RJ; Pumera M
    Faraday Discuss; 2013; 164():275-82. PubMed ID: 24466669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrocatalytic Activities of Chemically Reduced Graphene Are Essentially Dominated by the Adhered Carbonaceous Debris.
    Li X; Ma D; Zhu L
    Chemistry; 2015 Nov; 21(48):17239-44. PubMed ID: 26471848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical Studies of Oxygen Reactivity of Free-Standing and Supported Boron-Doped Graphene.
    Di Valentin C; Ferrighi L; Fazio G
    ChemSusChem; 2016 May; 9(10):1061-77. PubMed ID: 27031193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytotoxicity profile of highly hydrogenated graphene.
    Chng EL; Sofer Z; Pumera M
    Chemistry; 2014 May; 20(21):6366-73. PubMed ID: 24711117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical tuning of oxygen-containing groups on graphene oxides: towards control of the performance for the analysis of biomarkers.
    Lim CS; Ambrosi A; Pumera M
    Phys Chem Chem Phys; 2014 Jun; 16(24):12178-82. PubMed ID: 24817612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
    Qu L; Liu Y; Baek JB; Dai L
    ACS Nano; 2010 Mar; 4(3):1321-6. PubMed ID: 20155972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphane Nanostripes.
    Wang L; Sofer Z; Bouša D; Sedmidubský D; Huber Š; Matějková S; Michalcová A; Pumera M
    Angew Chem Int Ed Engl; 2016 Nov; 55(45):13965-13969. PubMed ID: 27603145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemistry at chemically modified graphenes.
    Ambrosi A; Bonanni A; Sofer Z; Cross JS; Pumera M
    Chemistry; 2011 Sep; 17(38):10763-70. PubMed ID: 21837720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residual metallic contamination of transferred chemical vapor deposited graphene.
    Lupina G; Kitzmann J; Costina I; Lukosius M; Wenger C; Wolff A; Vaziri S; Östling M; Pasternak I; Krajewska A; Strupinski W; Kataria S; Gahoi A; Lemme MC; Ruhl G; Zoth G; Luxenhofer O; Mehr W
    ACS Nano; 2015 May; 9(5):4776-85. PubMed ID: 25853630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural Origin of the Activity in Mn3O4-Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction.
    Wu KH; Zeng Q; Zhang B; Leng X; Su DS; Gentle IR; Wang DW
    ChemSusChem; 2015 Oct; 8(19):3331-9. PubMed ID: 26448527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards graphene bromide: bromination of graphite oxide.
    Jankovský O; Šimek P; Klimová K; Sedmidubský D; Matějková S; Pumera M; Sofer Z
    Nanoscale; 2014 Jun; 6(11):6065-74. PubMed ID: 24781432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen-doped graphene and its application in electrochemical biosensing.
    Wang Y; Shao Y; Matson DW; Li J; Lin Y
    ACS Nano; 2010 Apr; 4(4):1790-8. PubMed ID: 20373745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin.
    Shi F; Xi J; Hou F; Han L; Li G; Gong S; Chen C; Sun W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():450-7. PubMed ID: 26478332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geographical and geological origin of natural graphite heavily influence the electrical and electrochemical properties of chemically modified graphenes.
    Wong CH; Sofer Z; Pumera M
    Chemistry; 2015 Jun; 21(23):8435-40. PubMed ID: 25858504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.
    Behara DK; Ummireddi AK; Aragonda V; Gupta PK; Pala RG; Sivakumar S
    Phys Chem Chem Phys; 2016 Mar; 18(12):8364-77. PubMed ID: 26898750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.