These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27167167)

  • 1. Catalytic Environmentally Friendly Protocol for Achmatowicz Rearrangement.
    Li Z; Tong R
    J Org Chem; 2016 Jun; 81(11):4847-55. PubMed ID: 27167167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products.
    Liang L; Guo LD; Tong R
    Acc Chem Res; 2022 Aug; 55(16):2326-2340. PubMed ID: 35916456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese-Catalyzed Achmatowicz Rearrangement Using Green Oxidant H
    Xing Q; Hao Z; Hou J; Li G; Gao Z; Gou J; Li C; Yu B
    J Org Chem; 2021 Jul; 86(14):9563-9586. PubMed ID: 34181426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-Light-Mediated Achmatowicz Rearrangement.
    Plutschack MB; Seeberger PH; Gilmore K
    Org Lett; 2017 Jan; 19(1):30-33. PubMed ID: 27936797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly trans-selective arylation of Achmatowicz rearrangement products by reductive γ-deoxygenation and Heck-Matsuda reaction: asymmetric total synthesis of (-)-musellarins A-C and their analogues.
    Li Z; Ip FC; Ip NY; Tong R
    Chemistry; 2015 Jul; 21(31):11152-7. PubMed ID: 26104266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Functionalization of Achmatowicz Rearrangement Products by Reactions with Potassium Organotrifluoroborates under Transition-Metal-Free Conditions.
    Roscales S; Ortega V; Csákÿ AG
    J Org Chem; 2018 Sep; 83(18):11425-11436. PubMed ID: 30036474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions.
    Singh FV; Wirth T
    Chem Asian J; 2014 Apr; 9(4):950-71. PubMed ID: 24523252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem Achmatowicz Rearrangement and Acetalization of 1-[5-(Hydroxyalkyl)-furan-2-yl]-cyclobutanols Leading to Dispiroacetals and Subsequent Ring-Expansion to Form 6,7-Dihydrobenzofuran-4(5 H)-ones.
    Peng H; Luo W; Jiang H; Yin B
    J Org Chem; 2018 Oct; 83(20):12869-12879. PubMed ID: 30240214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypervalent iodine reagents as a new entrance to organocatalysts.
    Dohi T; Kita Y
    Chem Commun (Camb); 2009 Apr; (16):2073-85. PubMed ID: 19360157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorefinery via Achmatowicz Rearrangement: Synthesis of Pentane-1,2,5-triol from Furfuryl Alcohol.
    Simeonov SP; Ravutsov MA; Mihovilovic MD
    ChemSusChem; 2019 Jun; 12(12):2748-2754. PubMed ID: 31050856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.
    Vedernikov AN
    Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two catalytic protocols for Achmatowicz rearrangement using cyclic diacyl peroxides as oxidants.
    Wei C; Zhao R; Shen Z; Chang D; Shi L
    Org Biomol Chem; 2018 Aug; 16(31):5566-5569. PubMed ID: 30042996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach.
    Piera J; Bäckvall JE
    Angew Chem Int Ed Engl; 2008; 47(19):3506-23. PubMed ID: 18383499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the aza-Achmatowicz oxidative rearrangement for the stereoselective synthesis of the Cassia and Prosopis alkaloid family.
    Leverett CA; Cassidy MP; Padwa A
    J Org Chem; 2006 Oct; 71(22):8591-601. PubMed ID: 17064038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products.
    Wang HY; Yang K; Bennett SR; Guo SR; Tang W
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8756-9. PubMed ID: 26033736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diastereoselective reductive ring expansion of spiroketal dihydropyranones to cis-fused bicyclic ethers.
    Zhu L; Song L; Tong R
    Org Lett; 2012 Dec; 14(23):5892-5. PubMed ID: 23163770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks.
    Saha D; Taily IM; Kumar R; Banerjee P
    Chem Commun (Camb); 2021 Mar; 57(20):2464-2478. PubMed ID: 33616597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric total synthesis of (+)-didemniserinolipid B via Achmatowicz rearrangement/bicycloketalization.
    Ren J; Tong R
    J Org Chem; 2014 Aug; 79(15):6987-95. PubMed ID: 25020037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic-assisted environmentally-friendly synergetic synthesis of nitroaromatic compounds in core/shell nanoreactor: A green protocol.
    Maleki A; Aghaie M
    Ultrason Sonochem; 2017 Nov; 39():534-539. PubMed ID: 28732978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into the vanadium-catalyzed Achmatowicz rearrangement of furfurol.
    Ji Y; Benkovics T; Beutner GL; Sfouggatakis C; Eastgate MD; Blackmond DG
    J Org Chem; 2015 Feb; 80(3):1696-702. PubMed ID: 25562708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.