BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27167292)

  • 1. Initial evaluation of automated treatment planning software.
    Gintz D; Latifi K; Caudell J; Nelms B; Zhang G; Moros E; Feygelman V
    J Appl Clin Med Phys; 2016 May; 17(3):331-346. PubMed ID: 27167292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for a priori estimation of best feasible DVH for organs-at-risk: Validation for head and neck VMAT planning.
    Ahmed S; Nelms B; Gintz D; Caudell J; Zhang G; Moros EG; Feygelman V
    Med Phys; 2017 Oct; 44(10):5486-5497. PubMed ID: 28777469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of an automated knowledge based treatment planning system for head and neck.
    Krayenbuehl J; Norton I; Studer G; Guckenberger M
    Radiat Oncol; 2015 Nov; 10():226. PubMed ID: 26555303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans.
    Schmidt M; Lo JY; Grzetic S; Lutzky C; Brizel DM; Das SK
    Med Phys; 2015 Aug; 42(8):4428-34. PubMed ID: 26233173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of achievable plan quality on treatment technique and planning goal refinement: a head-and-neck intensity modulated radiation therapy application.
    Qi XS; Ruan D; Lee SP; Pham A; Kupelian P; Low DA; Steinberg M; Demarco J
    Int J Radiat Oncol Biol Phys; 2015 Mar; 91(4):817-24. PubMed ID: 25752396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-shaping using targeted sparse optimization.
    Sayre GA; Ruan D
    Med Phys; 2013 Jul; 40(7):071711. PubMed ID: 23822415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of organ-at-risk sparing and plan robustness for spot-scanning proton therapy and volumetric modulated arc photon therapy in head-and-neck cancer.
    Barten DL; Tol JP; Dahele M; Slotman BJ; Verbakel WF
    Med Phys; 2015 Nov; 42(11):6589-98. PubMed ID: 26520750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the gEUD biological optimization objective for organs at risk in Photon Optimizer of Eclipse treatment planning system.
    Fogliata A; Thompson S; Stravato A; Tomatis S; Scorsetti M; Cozzi L
    J Appl Clin Med Phys; 2018 Jan; 19(1):106-114. PubMed ID: 29152846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-based quality control of clinical intensity-modulated radiotherapy planning.
    Moore KL; Brame RS; Low DA; Mutic S
    Int J Radiat Oncol Biol Phys; 2011 Oct; 81(2):545-51. PubMed ID: 21277097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward optimal organ at risk sparing in complex volumetric modulated arc therapy: an exponential trade-off with target volume dose homogeneity.
    Tol JP; Dahele M; Doornaert P; Slotman BJ; Verbakel WF
    Med Phys; 2014 Feb; 41(2):021722. PubMed ID: 24506613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed evaluation of an automated approach to interactive optimization for volumetric modulated arc therapy plans.
    Tol JP; Dahele M; Delaney AR; Doornaert P; Slotman BJ; Verbakel WF
    Med Phys; 2016 Apr; 43(4):1818. PubMed ID: 27036579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning.
    Wu B; Ricchetti F; Sanguineti G; Kazhdan M; Simari P; Jacques R; Taylor R; McNutt T
    Int J Radiat Oncol Biol Phys; 2011 Mar; 79(4):1241-7. PubMed ID: 20800382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a knowledge-based planning solution for head and neck cancer.
    Tol JP; Delaney AR; Dahele M; Slotman BJ; Verbakel WF
    Int J Radiat Oncol Biol Phys; 2015 Mar; 91(3):612-20. PubMed ID: 25680603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study.
    Wu B; Pang D; Simari P; Taylor R; Sanguineti G; McNutt T
    Med Phys; 2013 Feb; 40(2):021714. PubMed ID: 23387737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric comparison of head and neck cancer patients planned with multivendor volumetric modulated arc therapy technology.
    Kathirvel M; Subramani V; Subramanian VS; Swamy ST; Arun G; Kala S
    J Cancer Res Ther; 2017; 13(1):122-130. PubMed ID: 28508845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneously integrated boost (SIB) spares OAR and reduces treatment time in locally advanced cervical cancer.
    Feng CH; Hasan Y; Kopec M; Al-Hallaq HA
    J Appl Clin Med Phys; 2016 Sep; 17(5):76-89. PubMed ID: 27685108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different treatment planning protocols can lead to large differences in organ at risk sparing.
    Tol JP; Dahele M; Doornaert P; Slotman BJ; Verbakel WF
    Radiother Oncol; 2014 Nov; 113(2):267-71. PubMed ID: 25454173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic interactive optimization for volumetric modulated arc therapy planning.
    Tol JP; Dahele M; Peltola J; Nord J; Slotman BJ; Verbakel WF
    Radiat Oncol; 2015 Apr; 10():75. PubMed ID: 25885689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated simultaneous integrated boosted-intensity modulated radiation therapy treatment planning is feasible for head-and-neck cancer: a prospective clinical study.
    Wu B; McNutt T; Zahurak M; Simari P; Pang D; Taylor R; Sanguineti G
    Int J Radiat Oncol Biol Phys; 2012 Dec; 84(5):e647-53. PubMed ID: 22867890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.