These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27167404)

  • 21. Hysteresis in the dynamic perception of scenes and objects.
    Poltoratski S; Tong F
    J Exp Psychol Gen; 2014 Oct; 143(5):1875-92. PubMed ID: 25150947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus.
    Silk TJ; Bellgrove MA; Wrafter P; Mattingley JB; Cunnington R
    Neuroimage; 2010 Nov; 53(2):718-24. PubMed ID: 20615473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lesion evidence for the critical role of the intraparietal sulcus in spatial attention.
    Gillebert CR; Mantini D; Thijs V; Sunaert S; Dupont P; Vandenberghe R
    Brain; 2011 Jun; 134(Pt 6):1694-709. PubMed ID: 21576110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Object detection in natural scenes: Independent effects of spatial and category-based attention.
    Stein T; Peelen MV
    Atten Percept Psychophys; 2017 Apr; 79(3):738-752. PubMed ID: 28138945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study.
    Henderson JM; Larson CL; Zhu DC
    Brain Cogn; 2008 Feb; 66(1):40-9. PubMed ID: 17606317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Encoding-Stage Crosstalk Between Object- and Spatial Property-Based Scene Processing Pathways.
    Linsley D; MacEvoy SP
    Cereb Cortex; 2015 Aug; 25(8):2267-81. PubMed ID: 24610116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparatory Activity in Posterior Temporal Cortex Causally Contributes to Object Detection in Scenes.
    Reeder RR; Perini F; Peelen MV
    J Cogn Neurosci; 2015 Nov; 27(11):2117-25. PubMed ID: 26102225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct representations of attentional control during voluntary and stimulus-driven shifts across objects and locations.
    Stoppel CM; Boehler CN; Strumpf H; Krebs RM; Heinze HJ; Hopf JM; Schoenfeld MA
    Cereb Cortex; 2013 Jun; 23(6):1351-61. PubMed ID: 22593242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orienting of visuo-spatial attention in complex 3D space: Search and detection.
    Ogawa A; Macaluso E
    Hum Brain Mapp; 2015 Jun; 36(6):2231-47. PubMed ID: 25691253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated contextual representation for objects' identities and their locations.
    Gronau N; Neta M; Bar M
    J Cogn Neurosci; 2008 Mar; 20(3):371-88. PubMed ID: 18004950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of target localization in visual change detection: an interplay of gating and filtering.
    Schneider D; Wascher E
    Behav Brain Res; 2013 Nov; 256():311-9. PubMed ID: 24001756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention.
    Natale E; Marzi CA; Girelli M; Pavone EF; Pollmann S
    Eur J Neurosci; 2006 May; 23(9):2511-21. PubMed ID: 16706858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural bases of the interactions between spatial attention and conscious perception.
    Chica AB; Paz-Alonso PM; Valero-Cabré A; Bartolomeo P
    Cereb Cortex; 2013 Jun; 23(6):1269-79. PubMed ID: 22508767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heightened activity in a key region of the ventral attention network is linked to reduced activity in a key region of the dorsal attention network during unexpected shifts of covert visual spatial attention.
    Weissman DH; Prado J
    Neuroimage; 2012 Jul; 61(4):798-804. PubMed ID: 22445785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sex related biases for attending to object color versus object position are reflected in reaction time and accuracy.
    McGivern RF; Mosso M; Freudenberg A; Handa RJ
    PLoS One; 2019; 14(1):e0210272. PubMed ID: 30625223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Task-set switching with natural scenes: measuring the cost of deploying top-down attention.
    Walther DB; Fei-Fei L
    J Vis; 2007 Aug; 7(11):9.1-12. PubMed ID: 17997664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Extraction of the Spatial Distribution of Physical Saliency and Semantic Informativeness from Natural Scenes in the Human Brain.
    Kiat JE; Hayes TR; Henderson JM; Luck SJ
    J Neurosci; 2022 Jan; 42(1):97-108. PubMed ID: 34750229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feature-independent neural coding of target detection during search of natural scenes.
    Guo F; Preston TJ; Das K; Giesbrecht B; Eckstein MP
    J Neurosci; 2012 Jul; 32(28):9499-510. PubMed ID: 22787035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.