BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27167504)

  • 1. An improved method for introducing site-directed point mutation into the Toxoplasma gondii genome using CRISPR/Cas9.
    Sugi T; Kato K; Weiss LM
    Parasitol Int; 2016 Oct; 65(5 Pt B):558-562. PubMed ID: 27167504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.
    Shen B; Brown KM; Lee TD; Sibley LD
    mBio; 2014 May; 5(3):e01114-14. PubMed ID: 24825012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9.
    Zheng J; Jia H; Zheng Y
    Int J Parasitol; 2015 Feb; 45(2-3):141-8. PubMed ID: 25444863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A streamlined CRISPR/Cas9 approach for fast genome editing in
    Winiger RR; Hehl AB
    J Biol Methods; 2020; 7(4):e140. PubMed ID: 33564692
    [No Abstract]   [Full Text] [Related]  

  • 5. CRISPR/Cas9-Mediated Generation of Tetracycline Repressor-Based Inducible Knockdown in Toxoplasma gondii.
    Jacot D; Soldati-Favre D
    Methods Mol Biol; 2020; 2071():125-141. PubMed ID: 31758450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single- and duplex TaqMan-quantitative PCR for determining the copy numbers of integrated selection markers during site-specific mutagenesis in Toxoplasma gondii by CRISPR-Cas9.
    Hänggeli KPA; Hemphill A; Müller N; Schimanski B; Olias P; Müller J; Boubaker G
    PLoS One; 2022; 17(9):e0271011. PubMed ID: 36112587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites.
    Di Cristina M; Carruthers VB
    Parasitology; 2018 Aug; 145(9):1119-1126. PubMed ID: 29463318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Past, Present, and Future of Genetic Manipulation in Toxoplasma gondii.
    Wang JL; Huang SY; Behnke MS; Chen K; Shen B; Zhu XQ
    Trends Parasitol; 2016 Jul; 32(7):542-553. PubMed ID: 27184069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9.
    Prykhozhij SV; Rajan V; Berman JN
    Zebrafish; 2016 Feb; 13(1):70-3. PubMed ID: 26683213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized CRISPR-Cas9 Genome Editing for
    Zhang WW; Lypaczewski P; Matlashewski G
    mSphere; 2017; 2(1):. PubMed ID: 28124028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxoplasma gondii: the model apicomplexan.
    Kim K; Weiss LM
    Int J Parasitol; 2004 Mar; 34(3):423-32. PubMed ID: 15003501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigative study on the role of the Toxo 5699 gene in the Toxoplasma gondii lytic cycle using the CRISPR/Cas9 system.
    De Silva JR; Ching XT; Lau YL
    Trop Biomed; 2020 Jun; 37(2):324-332. PubMed ID: 33612802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs.
    Xu P; Tong Y; Liu XZ; Wang TT; Cheng L; Wang BY; Lv X; Huang Y; Liu DP
    Sci Rep; 2015 Jul; 5():12065. PubMed ID: 26156589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR Screening of Toxoplasma gondii Single Clones Directly from 96-Well Plates Without DNA Purification.
    Piro F; Carruthers VB; Di Cristina M
    Methods Mol Biol; 2020; 2071():117-123. PubMed ID: 31758449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites.
    Cui Y; Yu L
    Parasitol Int; 2016 Dec; 65(6 Pt A):641-644. PubMed ID: 27586395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii.
    Ohshima J; Lee Y; Sasai M; Saitoh T; Su Ma J; Kamiyama N; Matsuura Y; Pann-Ghill S; Hayashi M; Ebisu S; Takeda K; Akira S; Yamamoto M
    J Immunol; 2014 Apr; 192(7):3328-35. PubMed ID: 24563254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.
    Schumann K; Lin S; Boyer E; Simeonov DR; Subramaniam M; Gate RE; Haliburton GE; Ye CJ; Bluestone JA; Doudna JA; Marson A
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10437-42. PubMed ID: 26216948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.