These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27167599)

  • 21. Wettability control of polymeric microstructures replicated from laser-patterned stamps.
    Fu Y; Soldera M; Wang W; Milles S; Deng K; Voisiat B; Nielsch K; Lasagni AF
    Sci Rep; 2020 Dec; 10(1):22428. PubMed ID: 33380738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smart Mechanically Tunable Surfaces with Shape Memory Behavior and Wetting-Programmable Topography.
    Constante G; Apsite I; Auerbach P; Aland S; Schönfeld D; Pretsch T; Milkin P; Ionov L
    ACS Appl Mater Interfaces; 2022 May; 14(17):20208-20219. PubMed ID: 35438953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable wetting of polymer surfaces.
    Yilgor I; Bilgin S; Isik M; Yilgor E
    Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A biomimetic surface with switchable contact angle and adhesion for transfer and storage of microdroplets.
    Gao H; Liu Y; Li S; Wang G; Han Z; Ren L
    Nanoscale; 2018 Aug; 10(32):15393-15401. PubMed ID: 30084465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry.
    Lv T; Cheng Z; Zhang E; Kang H; Liu Y; Jiang L
    Small; 2017 Jan; 13(4):. PubMed ID: 26822176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity.
    Hua Z; Yang J; Wang T; Liu G; Zhang G
    Langmuir; 2013 Aug; 29(33):10307-12. PubMed ID: 23915149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermally tunable surface wettability of electrospun fiber mats: polystyrene/poly(N-isopropylacrylamide) blended versus crosslinked poly[(N-isopropylacrylamide)-co-(methacrylic acid)].
    Muthiah P; Hoppe SM; Boyle TJ; Sigmund W
    Macromol Rapid Commun; 2011 Nov; 32(21):1716-21. PubMed ID: 21994211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Femtosecond laser controlled wettability of solid surfaces.
    Yong J; Chen F; Yang Q; Hou X
    Soft Matter; 2015 Dec; 11(46):8897-906. PubMed ID: 26415826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smart Diffraction Gratings Based on the Shape Memory Effect.
    Sun XC; Zhang ZP; Sun ZJ; Zheng JX; Liu XQ; Xia H
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100863. PubMed ID: 35179256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superhydrophobic surfaces from hierarchically structured wrinkled polymers.
    Li Y; Dai S; John J; Carter KR
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11066-73. PubMed ID: 24131534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-Infrared Light Responsive Surface with Switchable Wettability in Microstructure and Surface Chemistry.
    Hou Y; Weng D; Zhang Z; Yu Y; Chen L; Wang J
    Langmuir; 2023 May; 39(17):6276-6286. PubMed ID: 37083283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing contact lines on chemically patterned surfaces.
    Cubaud T; Fermigier M
    J Colloid Interface Sci; 2004 Jan; 269(1):171-7. PubMed ID: 14651910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of patterned solid surfaces with highly controllable wettability.
    Wang M; Guo CF; Wang X; Xiang B; Qiu M; He T; Yang H; Chen Y; Dong J; Liu Q; Ruan S
    RSC Adv; 2021 Sep; 11(51):31877-31883. PubMed ID: 35495539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlled wettability based on reversible micro-cracking on a shape memory polymer surface.
    Han Y; Liu Y; Wang W; Leng J; Jin P
    Soft Matter; 2016 Mar; 12(10):2708-14. PubMed ID: 26865175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterning of controllable surface wettability for printing techniques.
    Tian D; Song Y; Jiang L
    Chem Soc Rev; 2013 Jun; 42(12):5184-209. PubMed ID: 23511610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired shape-memory graphene film with tunable wettability.
    Wang J; Sun L; Zou M; Gao W; Liu C; Shang L; Gu Z; Zhao Y
    Sci Adv; 2017 Jun; 3(6):e1700004. PubMed ID: 28630920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability.
    Ista LK; Mendez S; Lopez GP
    Biofouling; 2010 Jan; 26(1):111-8. PubMed ID: 20390561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets.
    Wu H; Zhu K; Cao B; Zhang Z; Wu B; Liang L; Chai G; Liu A
    Soft Matter; 2017 Apr; 13(16):2995-3002. PubMed ID: 28367564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.