BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27167623)

  • 1. Growth on ATP Elicits a P-Stress Response in the Picoeukaryote Micromonas pusilla.
    Whitney LP; Lomas MW
    PLoS One; 2016; 11(5):e0155158. PubMed ID: 27167623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact.
    Maat DS; Crawfurd KJ; Timmermans KR; Brussaard CP
    Appl Environ Microbiol; 2014 May; 80(10):3119-27. PubMed ID: 24610859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla.
    Waltman PH; Guo J; Reistetter EN; Purvine S; Ansong CK; van Baren MJ; Wong CH; Wei CL; Smith RD; Callister SJ; Stuart JM; Worden AZ
    PLoS One; 2016; 11(7):e0155839. PubMed ID: 27434306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate.
    Shi X; Lin X; Li L; Li M; Palenik B; Lin S
    ISME J; 2017 Oct; 11(10):2209-2218. PubMed ID: 28548660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic and physiological responses of Skeletonema costatum to ATP utilization.
    Zhang X; Lin S; Liu D
    Environ Microbiol; 2020 May; 22(5):1861-1869. PubMed ID: 32077205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virus production in phosphorus-limited Micromonas pusilla stimulated by a supply of naturally low concentrations of different phosphorus sources, far into the lytic cycle.
    Maat DS; van Bleijswijk JD; Witte HJ; Brussaard CP
    FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27316561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense].
    Zhao YF; Yu ZM; Song XX; Cao XH
    Huan Jing Ke Xue; 2009 Mar; 30(3):693-9. PubMed ID: 19432314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid shifts in picoeukaryote community structure in response to ocean acidification.
    Meakin NG; Wyman M
    ISME J; 2011 Sep; 5(9):1397-405. PubMed ID: 21412344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytate as a Phosphorus Nutrient with Impacts on Iron Stress-Related Gene Expression for Phytoplankton: Insights from the Diatom
    Li J; Zhang K; Lin X; Li L; Lin S
    Appl Environ Microbiol; 2022 Jan; 88(2):e0209721. PubMed ID: 34757820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing.
    Orsi WD; Wilken S; Del Campo J; Heger T; James E; Richards TA; Keeling PJ; Worden AZ; Santoro AE
    Environ Microbiol; 2018 Feb; 20(2):815-827. PubMed ID: 29215213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of Alkaline Phosphatase PhoA in Algal Metabolic Regulation under Phosphorus-replete Conditions.
    Zhang K; Li J; Zhou Z; Huang R; Lin S
    J Phycol; 2021 Jun; 57(3):703-707. PubMed ID: 33608874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trichodesmium’s strategies to alleviate phosphorus limitation in the future acidified oceans.
    Spungin D; Berman-Frank I; Levitan O
    Environ Microbiol; 2014 Jun; 16(6):1935-47. PubMed ID: 25009839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans.
    McKie-Krisberg ZM; Sanders RW
    ISME J; 2014 Oct; 8(10):1953-61. PubMed ID: 24553471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.
    Lin S; Litaker RW; Sunda WG
    J Phycol; 2016 Feb; 52(1):10-36. PubMed ID: 26987085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus.
    Martin P; Dyhrman ST; Lomas MW; Poulton NJ; Van Mooy BA
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8089-94. PubMed ID: 24753593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and physiological analyses of the dinoflagellate Karenia mikimotoi reveal non-alkaline phosphatase-based molecular machinery of ATP utilisation.
    Luo H; Lin X; Li L; Lin L; Zhang C; Lin S
    Environ Microbiol; 2017 Nov; 19(11):4506-4518. PubMed ID: 28856827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense.
    Zhang SF; Yuan CJ; Chen Y; Lin L; Wang DZ
    Sci Total Environ; 2019 Nov; 692():1037-1047. PubMed ID: 31539936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Intraspecific Variation in Growth and Alkaline Phosphatase Activity of
    Ye JM; Zhao L; Luo X; Peng L; Lei LM
    Huan Jing Ke Xue; 2020 Sep; 41(9):4088-4094. PubMed ID: 33124290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments.
    Ren L; Wang P; Wang C; Chen J; Hou J; Qian J
    Environ Pollut; 2017 Jan; 220(Pt A):274-285. PubMed ID: 27665120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean.
    Grob C; Hartmann M; Zubkov MV; Scanlan DJ
    Environ Microbiol; 2011 Dec; 13(12):3266-74. PubMed ID: 21951381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.