These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 27167779)
21. Stability of Pt near surface alloys under electrochemical conditions: a model study. Zhang X; Yu S; Zheng W; Liu P Phys Chem Chem Phys; 2014 Aug; 16(31):16615-22. PubMed ID: 24994557 [TBL] [Abstract][Full Text] [Related]
22. Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells. Cheng T; Goddard WA; An Q; Xiao H; Merinov B; Morozov S Phys Chem Chem Phys; 2017 Jan; 19(4):2666-2673. PubMed ID: 28067933 [TBL] [Abstract][Full Text] [Related]
23. Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. Escudero-Escribano M; Verdaguer-Casadevall A; Malacrida P; Grønbjerg U; Knudsen BP; Jepsen AK; Rossmeisl J; Stephens IE; Chorkendorff I J Am Chem Soc; 2012 Oct; 134(40):16476-9. PubMed ID: 22998588 [TBL] [Abstract][Full Text] [Related]
24. Synergistic effect of Pt-Ni dual single-atoms and alloy nanoparticles as a high-efficiency electrocatalyst to minimize Pt utilization at cathode in polymer electrolyte membrane fuel cells. Duc Le T; Ahemad MJ; Kim DS; Lee BH; Oh GJ; Shin GS; Nagappagari LR; Dao V; Van Tran T; Yu YT J Colloid Interface Sci; 2023 Mar; 634():930-939. PubMed ID: 36566637 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells. Sode A; Li W; Yang Y; Wong PC; Gyenge E; Mitchell KA; Bizzotto D J Phys Chem B; 2006 May; 110(17):8715-22. PubMed ID: 16640427 [TBL] [Abstract][Full Text] [Related]
26. Potential Energy Surface Profile of the Oxygen Reduction Reaction on a Pt Cluster: Adsorption and Decomposition of OOH and H2O2. Wang Y; Balbuena PB J Chem Theory Comput; 2005 Sep; 1(5):935-43. PubMed ID: 26641909 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Activity of Oxygen Reduction Reaction on Pr Wu Y; Wang S; Zhang M; Hong Y; Zhang X; Wang C; He W; Zhou G; Chen Y; Zhang Y ACS Appl Mater Interfaces; 2022 Sep; 14(37):41861-41869. PubMed ID: 36087279 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of Electrocatalytic Oxygen Reduction Activity and Durability of Pt-Ni Rhombic Dodecahedral Nanoframes by Anchoring to Nitrogen-Doped Carbon Support. Kato M; Ogura K; Nakagawa S; Tokuda S; Takahashi K; Nakamura T; Yagi I ACS Omega; 2018 Aug; 3(8):9052-9059. PubMed ID: 31459039 [TBL] [Abstract][Full Text] [Related]
29. Graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites as potential metal-free electrocatalysts for oxygen reduction reaction. Feng Z; Ma Y; Li Y; Li R; Liu J; Li H; Tang Y; Dai X J Phys Condens Matter; 2019 Nov; 31(46):465201. PubMed ID: 31318700 [TBL] [Abstract][Full Text] [Related]
30. Molecular Insight of the Critical Role of Ni in Pt-Based Nanocatalysts for Improving the Oxygen Reduction Reaction Probed Using an Ze H; Chen X; Wang XT; Wang YH; Chen QQ; Lin JS; Zhang YJ; Zhang XG; Tian ZQ; Li JF J Am Chem Soc; 2021 Jan; 143(3):1318-1322. PubMed ID: 33449677 [TBL] [Abstract][Full Text] [Related]
31. Nitrogen-doped graphene anchored with mixed growth patterns of CuPt alloy nanoparticles as a highly efficient and durable electrocatalyst for the oxygen reduction reaction in an alkaline medium. Illathvalappil R; Dhavale VM; Bhange SN; Kurungot S Nanoscale; 2017 Jul; 9(26):9009-9017. PubMed ID: 28639678 [TBL] [Abstract][Full Text] [Related]
32. Highly Active and Stable Pt-Pd Alloy Catalysts Synthesized by Room-Temperature Electron Reduction for Oxygen Reduction Reaction. Wang W; Wang Z; Wang J; Zhong CJ; Liu CJ Adv Sci (Weinh); 2017 Apr; 4(4):1600486. PubMed ID: 28435780 [TBL] [Abstract][Full Text] [Related]
33. How to Boost the Activity of the Monolayer Pt Supported on TiC Catalysts for Oxygen Reduction Reaction: A Density Functional Theory Study. Zhu H; Liu H; Yang L; Xiao B Materials (Basel); 2019 May; 12(9):. PubMed ID: 31085995 [TBL] [Abstract][Full Text] [Related]
34. Nanoporous Platinum/(Mn,Al) Si C; Zhang J; Wang Y; Ma W; Gao H; Lv L; Zhang Z ACS Appl Mater Interfaces; 2017 Jan; 9(3):2485-2494. PubMed ID: 28054484 [TBL] [Abstract][Full Text] [Related]
35. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Park JE; Jang YJ; Kim YJ; Song MS; Yoon S; Kim DH; Kim SJ Phys Chem Chem Phys; 2014 Jan; 16(1):103-9. PubMed ID: 24220278 [TBL] [Abstract][Full Text] [Related]
36. Elucidation of adsorption processes at the surface of Pt(331) model electrocatalysts in acidic aqueous media. Pohl MD; Colic V; Scieszka D; Bandarenka AS Phys Chem Chem Phys; 2016 Apr; 18(16):10792-9. PubMed ID: 26923167 [TBL] [Abstract][Full Text] [Related]
37. Low Pt-Loaded Mesoporous Sodium Germanate as a High-Performance Electrocatalyst for the Oxygen Reduction Reaction. Zhou X; Chen L; Wan G; Chen Y; Kong Q; Chen H; Shi J ChemSusChem; 2016 Sep; 9(17):2337-42. PubMed ID: 27539826 [TBL] [Abstract][Full Text] [Related]
38. New insights into O and OH adsorption on the Pt-Co alloy surface: effects of Pt/Co ratios and structures. Zhao P; Qin X; Li H; Qu K; Li R Phys Chem Chem Phys; 2020 Sep; 22(37):21124-21130. PubMed ID: 32955059 [TBL] [Abstract][Full Text] [Related]
39. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction. Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730 [TBL] [Abstract][Full Text] [Related]
40. Deciphering the Role of Substitution in Transition-Metal Phosphorous Trisulfide (100) Surface: A Highly Efficient and Durable Pt-free ORR Electrocatalyst. Jana R; Chowdhury C; Datta A Chemphyschem; 2022 Aug; 23(15):e202200013. PubMed ID: 35467795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]