These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 27167910)

  • 1. MOLECULAR DYNAMICS SIMULATION TO ELUCIDATE THE THERMOSTABILITY OF B DOMAIN IN CGTASE.
    Fu Y; Chen Z; Zhao J
    Theor Biol Forum; 2015; 108(1-2):57-73. PubMed ID: 27167910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the relationship between cyclodextrin glycosyltransferase's thermostability and salt bridge by molecular dynamics simulation.
    Fu Y; Ding Y; Chen Z; Sun J; Fang W; Xu W
    Protein Pept Lett; 2010 Nov; 17(11):1403-11. PubMed ID: 20594159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring unfolding pathway of CGTase: insight from molecular dynamics simulation.
    Fu Y; Ding Y; Chen Z; Xu W
    Riv Biol; 2009; 102(3):347-64. PubMed ID: 20533185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge.
    Leemhuis H; Rozeboom HJ; Dijkstra BW; Dijkhuizen L
    Proteins; 2004 Jan; 54(1):128-34. PubMed ID: 14705029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure at 2.3 A resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermonanaerobacterium thermosulfurigenes EM1.
    Knegtel RM; Wind RD; Rozeboom HJ; Kalk KH; Buitelaar RM; Dijkhuizen L; Dijkstra BW
    J Mol Biol; 1996 Mar; 256(3):611-22. PubMed ID: 8604143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an α-cyclodextrin glycosyltransferase from Paenibacillus sp. 602-1.
    Xie T; Song B; Yue Y; Chao Y; Qian S
    J Biotechnol; 2014 Jan; 170():10-6. PubMed ID: 24246271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylene glycols enhance the thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans.
    Li C; Li W; Holler TP; Gu Z; Li Z
    Food Chem; 2014 Dec; 164():17-22. PubMed ID: 24996299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein "CheY".
    Paul M; Hazra M; Barman A; Hazra S
    J Biomol Struct Dyn; 2014; 32(6):928-49. PubMed ID: 23796004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Enhanced storage stability of recombinant enzyme preparation of alpha-CGTase from Paenibacillus macerans by chemical additives].
    Zheng X; Wu D; Li Z; Chen J; Wu J
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):185-95. PubMed ID: 21650042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation.
    Liu J; Yu H; Shen Z
    J Mol Graph Model; 2008 Nov; 27(4):529-35. PubMed ID: 18948044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium ion contribution to thermostability of cyclodextrin glycosyltransferase is closely related to calcium-binding site CaIII.
    Li C; Ban X; Gu Z; Li Z
    J Agric Food Chem; 2013 Sep; 61(37):8836-41. PubMed ID: 23968201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of a mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to β-/γ-cyclodextrin.
    Xie T; Hou Y; Li D; Yue Y; Qian S; Chao Y
    J Biotechnol; 2014 Jul; 182-183():92-6. PubMed ID: 24637377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of a new thermostable cyclodextrin glucanotransferase from Bacillus pseudalcaliphilus 8SB.
    Kitayska T; Petrova P; Ivanova V; Tonkova AI
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1285-95. PubMed ID: 21894524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural study of carboxylesterase from hyperthermophilic bacteria Geobacillus stearothermophilus by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2010 Jun; 28(8):820-7. PubMed ID: 20347362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of cyclodextrin glycosyltransferase by alkaliphilic Bacillus circulans in submerged and solid-state cultivation.
    Pinto FS; Flôres SH; Ayub MA; Hertz PF
    Bioprocess Biosyst Eng; 2007 Sep; 30(5):377-82. PubMed ID: 17574546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase.
    Manjunath K; Sekar K
    J Chem Inf Model; 2013 Sep; 53(9):2448-61. PubMed ID: 23962324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2009; 27(8):871-80. PubMed ID: 19223214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring single-domain antibody thermostability by molecular dynamics simulation.
    Mohseni A; Molakarimi M; Taghdir M; Sajedi RH; Hasannia S
    J Biomol Struct Dyn; 2019 Sep; 37(14):3686-3696. PubMed ID: 30241448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii.
    Thiemann V; Dönges C; Prowe SG; Sterner R; Antranikian G
    Arch Microbiol; 2004 Oct; 182(2-3):226-35. PubMed ID: 15340782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.