These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27168127)

  • 1. Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence.
    Kaganer VM; Fernández-Garrido S; Dogan P; Sabelfeld KK; Brandt O
    Nano Lett; 2016 Jun; 16(6):3717-25. PubMed ID: 27168127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.
    Zettler JK; Corfdir P; Geelhaar L; Riechert H; Brandt O; Fernández-Garrido S
    Nanotechnology; 2015 Nov; 26(44):445604. PubMed ID: 26457772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy.
    Calarco R; Meijers RJ; Debnath RK; Stoica T; Sutter E; Lüth H
    Nano Lett; 2007 Aug; 7(8):2248-51. PubMed ID: 17602537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy.
    Landré O; Bougerol C; Renevier H; Daudin B
    Nanotechnology; 2009 Oct; 20(41):415602. PubMed ID: 19755728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective area formation of GaN nanowires on GaN substrates by the use of amorphous Al
    Sobanska M; Zytkiewicz ZR; Klosek K; Kruszka R; Golaszewska K; Ekielski M; Gieraltowska S
    Nanotechnology; 2020 May; 31(18):184001. PubMed ID: 31940593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical Selection of GaN Nanowires Grown by Plasma-Assisted MBE on Polycrystalline ZrN Layers.
    Olszewski K; Sobanska M; Dubrovskii VG; Leshchenko ED; Wierzbicka A; Zytkiewicz ZR
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled growth of GaN nanowires on amorphous Al x O y : from nucleation to the formation of dense nanowire ensembles.
    Sobanska M; Fernández-Garrido S; Zytkiewicz ZR; Tchutchulashvili G; Gieraltowska S; Brandt O; Geelhaar L
    Nanotechnology; 2016 Aug; 27(32):325601. PubMed ID: 27354451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy.
    Gačević Ž; Gómez Sánchez D; Calleja E
    Nano Lett; 2015 Feb; 15(2):1117-21. PubMed ID: 25603117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarity-Induced Selective Area Epitaxy of GaN Nanowires.
    de Souza Schiaber Z; Calabrese G; Kong X; Trampert A; Jenichen B; Dias da Silva JH; Geelhaar L; Brandt O; Fernández-Garrido S
    Nano Lett; 2017 Jan; 17(1):63-70. PubMed ID: 28073259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial reactions during the molecular beam epitaxy of GaN nanowires on Ti/Al
    Calabrese G; Gao G; van Treeck D; Corfdir P; Sinito C; Auzelle T; Trampert A; Geelhaar L; Brandt O; Fernández-Garrido S
    Nanotechnology; 2019 Mar; 30(11):114001. PubMed ID: 30681980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density control of GaN nanowires at the wafer scale using self-assembled SiN
    Auzelle T; Oliva M; John P; Ramsteiner M; Trampert A; Geelhaar L; Brandt O
    Nanotechnology; 2023 Jun; 34(37):. PubMed ID: 37311438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates.
    Prabaswara A; Kim H; Min JW; Subedi RC; Anjum DH; Davaasuren B; Moore K; Conroy M; Mitra S; Roqan IS; Ng TK; Alshareef HN; Ooi BS
    ACS Nano; 2020 Feb; 14(2):2202-2211. PubMed ID: 31986010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between the structural and optical properties of spontaneously formed GaN nanowires: a quantitative evaluation of the impact of nanowire coalescence.
    Fernández-Garrido S; Kaganer VM; Hauswald C; Jenichen B; Ramsteiner M; Consonni V; Geelhaar L; Brandt O
    Nanotechnology; 2014 Nov; 25(45):455702. PubMed ID: 25327280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy.
    Schuster F; Hetzl M; Weiszer S; Garrido JA; de la Mata M; Magen C; Arbiol J; Stutzmann M
    Nano Lett; 2015 Mar; 15(3):1773-9. PubMed ID: 25633130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity.
    Fernández-Garrido S; Kong X; Gotschke T; Calarco R; Geelhaar L; Trampert A; Brandt O
    Nano Lett; 2012 Dec; 12(12):6119-25. PubMed ID: 23130785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes.
    Carnevale SD; Yang J; Phillips PJ; Mills MJ; Myers RC
    Nano Lett; 2011 Feb; 11(2):866-71. PubMed ID: 21265558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complications in silane-assisted GaN nanowire growth.
    Jiang N; Ghosh S; Frentrup M; Fairclough SM; Loeto K; Kusch G; Oliver RA; Joyce HJ
    Nanoscale Adv; 2023 May; 5(9):2610-2620. PubMed ID: 37143793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy.
    Gruart M; Jacopin G; Daudin B
    Nano Lett; 2019 Jul; 19(7):4250-4256. PubMed ID: 31241343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy.
    Fernández-Garrido S; Kaganer VM; Sabelfeld KK; Gotschke T; Grandal J; Calleja E; Geelhaar L; Brandt O
    Nano Lett; 2013 Jul; 13(7):3274-80. PubMed ID: 23758601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of an AlN seeding layer on nucleation of self-assembled GaN nanowires on silicon substrates.
    Wu Y; Liu B; Li Z; Tao T; Xie Z; Wang K; Xiu X; Chen D; Lu H; Zhang R; Zheng Y
    Nanotechnology; 2020 Jan; 31(4):045604. PubMed ID: 31578003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.