These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27168287)

  • 1. Temperature-controlled photonic nanojet via VO
    Soh JH; Wu M; Gu G; Chen L; Hong M
    Appl Opt; 2016 May; 55(14):3751-6. PubMed ID: 27168287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switchable Photonic Nanojet by Electro-Switching Nematic Liquid Crystals.
    Du B; Xia J; Wu J; Zhao J; Zhang H
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30621324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultranarrow photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials.
    Zhen Z; Huang Y; Feng Y; Shen Y; Li Z
    Opt Express; 2019 Mar; 27(6):9178-9188. PubMed ID: 31052726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Photonic Nanojet Using Gold Film Dielectric Microdisk Structure.
    Zeng X; Su N; Zhang W; Ye Z; Wu P; Liu B
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic Nanojets.
    Heifetz A; Kong SC; Sahakian AV; Taflove A; Backman V
    J Comput Theor Nanosci; 2009 Sep; 6(9):1979-1992. PubMed ID: 19946614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To generate a photonic nanojet outside a high refractive index microsphere illuminated by a Gaussian beam.
    Gašparić V; Mayerhöfer TG; Zopf D; Ristić D; Popp J; Ivanda M
    Opt Lett; 2022 May; 47(10):2534-2537. PubMed ID: 35561393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced visible transmittance and reduced transition temperature for VO
    Zhu M; Qi H; Wang B; Wang H; Zhang D; Lv W
    RSC Adv; 2018 Aug; 8(51):28953-28959. PubMed ID: 35547982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet.
    Yang H; Trouillon R; Huszka G; Gijs MA
    Nano Lett; 2016 Aug; 16(8):4862-70. PubMed ID: 27398718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralong photonic nanojet formed by dielectric microtoroid structure.
    Zhang B; Hao J; Shen Z; Wu H; Zhu K; Xu J; Ding J
    Appl Opt; 2018 Oct; 57(28):8331-8337. PubMed ID: 30461785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder.
    Yang J; Twardowski P; Gérard P; Duo Y; Fontaine J; Lecler S
    Opt Express; 2018 Feb; 26(4):3723-3731. PubMed ID: 29475352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of photonic nanojets generated by microspheres decorated with concentric rings.
    Wu MX; Huang BJ; Chen R; Yang Y; Wu JF; Ji R; Chen XD; Hong MH
    Opt Express; 2015 Jul; 23(15):20096-103. PubMed ID: 26367667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the photonic nanojet of microspheres on microsphere imaging.
    Yang S; Wang F; Ye YH; Xia Y; Deng Y; Wang J; Cao Y
    Opt Express; 2017 Oct; 25(22):27551-27558. PubMed ID: 29092226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder.
    Xing H; Zhou W; Wu Y
    Opt Lett; 2018 Sep; 43(17):4292-4295. PubMed ID: 30160710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond Laser-Induced Vanadium Oxide Metamaterial Nanostructures and the Study of Optical Response by Experiments and Numerical Simulations.
    Bhupathi S; Wang S; Abutoama M; Balin I; Wang L; Kazansky PG; Long Y; Abdulhalim I
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41905-41918. PubMed ID: 32838521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable near-infrared Gires-Tournois resonators based on vanadium dioxide on gold film.
    Jafari AK; Gaddy M; Ho YC; Uzun C; Kuryatkov V; Nikishin SA; Kim MH; Grave de Peralta L; Bernussi AA
    Opt Lett; 2022 Feb; 47(3):645-648. PubMed ID: 35103694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanodiscs on vanadium dioxide thin films for tunable luminescence enhancement.
    Cunningham S; Hrelescu C; Bradley AL
    Opt Express; 2021 Jul; 29(14):22288-22298. PubMed ID: 34265997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared optical properties modulation of VO
    Barimah EK; Boontan A; Steenson DP; Jose G
    Sci Rep; 2022 Jul; 12(1):11421. PubMed ID: 35794203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharper photonic nanojets generated by microspheres under higher-order radially polarized beam illumination.
    Xing Z; Wang X; Fu Y; Liu W; Cheng J; Zeng M
    Appl Opt; 2021 Dec; 60(35):10816-10824. PubMed ID: 35200841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristic parameters of photonic nanojets of single dielectric microspheres illuminated by focused broadband radiation.
    Mandal A; Tiwari P; Upputuri PK; Dantham VR
    Sci Rep; 2022 Jan; 12(1):173. PubMed ID: 34996911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active gratings tuned by thermoplasmonics-induced phase transition in vanadium dioxide thin films.
    Wu BH; Xu XF; Wang CR
    Opt Lett; 2016 Dec; 41(24):5768-5771. PubMed ID: 27973497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.